
如图,已知正四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)的底面边长为\(1\),侧棱长为\(2\),点\(P\),\(Q\)分别在半圆弧\(\hat{C}_{1}C\),\(\hat{A}_{1}A(\)均不含端点\()\)上,且\(C_{1}\),\(P\),\(Q\),\(C\)在球\(O\)上,则\((\quad)\)
A.当点\(Q\)在\(\hat{A}_{1}A\)的三等分点处,球\(O\)的表面积为\((11-3\sqrt{3})π\)
B.当点\(P\)在\(\hat{C}_{1}C\)的中点处,过\(C_{1}\),\(P\),\(Q\)三点的平面截正四棱柱所得的截面的形状都是四边形 C.球\(O\)的表面积的取值范围为\((4π,8π)\) D.当点\(P\)在\(\hat{C}_{1}C\)的中点处,三棱锥\(C_{1}-PQC\)的体积为定值