题型:选择题 题类:月考试卷 难易度:较难
测年份:2018
若\({{\left( 1-2x \right)}^{2018}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+...+{{a}_{2018}}{{x}^{2018}}\left( x\in R \right)\),则\(\dfrac{{{a}_{1}}}{2}+\dfrac{{{a}_{2}}}{{{2}^{2}}}+\dfrac{{{a}_{2018}}}{{{2}^{2018}}}\)的值为\((\) \()\)
题型:选择题 题类:月考试卷 难易度:较难
测年份:2018
若\((2x-1{)}^{2015}={a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{2015}{x}^{2015}(x∈R) \), \(则 \dfrac{1}{2}+ \dfrac{{a}_{2}}{{2}^{2}{a}_{1}}+ \dfrac{{a}_{3}}{{2}^{3}{a}_{1}}+…+ \dfrac{{a}_{2015}}{{2}^{2015}{a}_{1}} \)的值为\((\) \()\)