题型:填空题 题类:月考试卷 难易度:较难
年份:2018
已知实数\(x\),\(y\)满足\(\left\{ \begin{matrix} 2x-y+4\geqslant 0 \\ x-y+3\geqslant 0 \\ x\leqslant 0\begin{matrix} \begin{matrix} {} \\ \end{matrix} \\ \end{matrix}\begin{matrix} {} & {} \\ \end{matrix}\begin{matrix} {} \\ \end{matrix} \\ y\geqslant 0\begin{matrix} {} \\ \end{matrix}\begin{matrix} {} \\ \end{matrix}\begin{matrix} {} & {} \\ \end{matrix} \\\end{matrix} \right.\),则目标函数\(z=4y-3x\)的最大值为___________.
题型:填空题 题类:月考试卷 难易度:中档
年份:2018
\((1)\)已知集合\(A=\left\{ x\in Z|y={{\log }_{3}}\left( x+5 \right) \right\},B=\left\{ x\in R|{{2}^{x}} < \dfrac{1}{2} \right\}\),则\(A\bigcap B=\)____________.
\((2)\)过双曲线\(C:\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\left( a,b > 0 \right)\)的右焦点且垂直于\(x\)轴的直线与\(C\)的渐近线相交于\(A,B\)两点,若\(\Delta AOB(O\)为原点\()\)为正三角形,则\(C\)的离心率是 ____________.
\((3)\) 已知变量\(x,y\)满足约束条件\(\begin{cases} & x+2y-3\leqslant 0, \\ & x+3y-3\geqslant 0, \\ & y-1\leqslant 0, \end{cases}\)则\(F\left( x,y \right)={{\log }_{2}}\left( y+1 \right)+{{\log }_{\frac{1}{2}}}\left( x+1 \right)\)的最小值为___________.
\((4)\)若数列\(\left\{ {{a}_{n}} \right\}\)满足\({{a}_{2}}-{{a}_{1}} > {{a}_{3}}-{{a}_{2}} > {{a}_{4}}-{{a}_{3}} > \cdot \cdot \cdot > {{a}_{n+1}}-{{a}_{n}} > \cdot \cdot \cdot \),则称数列\(\left\{ {{a}_{n}} \right\}\)为“差递减”数列\(.\)若数列\(\left\{ {{a}_{n}} \right\}\)是“差递减”数列,且其通项\({{a}_{n}}\)与其前\(n\)项和\({{S}_{n}}\left( n\in {{N}^{*}} \right)\)满足\(2{{S}_{n}}=3{{a}_{n}}+2\lambda -1\left( n\in {{N}^{*}} \right)\),则实数\(\lambda \)的取值范围是__________.
题型:填空题 题类:月考试卷 难易度:难
年份:2018
\((1)\) 设\(z{=}3x{+}y\),实数\(x{,}y\)满足\(\begin{cases} 2x{+}y{\geqslant }0 \\ 2x{-}y{\leqslant }0 \\ 0{\leqslant }y{\leqslant }t \end{cases}\)其中\(t{ > }0\),若\(z\) 的最大值为\(5\),则实数\(t\)的值为______,此时\(z\)的最小值为______.
\((2)\)设抛物线\(C\):\(y^{2}{=}4x\)的焦点为\(F{,}M\)为抛物线\(C\)上一点,\(N(2{,}2)\),则\({|}MF{|} + {|}MN{|}\)的取值范围为______.
\((3)\) 在直角\({\triangle }ABC\)中,若\({∠}C{=}90^{{∘}}{,}AC{=}b{,}BC{=}a\),则\({\triangle }ABC\)的外接圆半径可表示为\(r{=}\dfrac{\sqrt{a^{2}{+}b^{2}}}{2}{.}\)运用类比推理的方法,若三棱锥的三条侧棱两两相互垂直且长度分别为\(a{,}b{,}c\),则该三棱锥外接球的半径\(R{=}\)______ .
\((4)\)已知可导函数\(f(x)\)的导函数\(f{{{{'}}}}(x)\)满足\(f{{{{'}}}}(x){ > }f(x)\),则不等式\(\dfrac{f(x)}{e^{x}}{ > }\dfrac{f(1)}{e}\)的解集是______ .