题型:填空题 题类:其他 难易度:较易
年份:2018
\((1)\)若\(x,y\)满足约束条件\(\begin{cases} & x+y-1\geqslant 0 \\ & x-y-1\leqslant 0 \\ & x-3y+3\geqslant 0 \end{cases}\),则\(z=2x+y\)的最大值为_________.
\((2)\)若函数\(f\left( x \right)=\sqrt{2}\cos \left( \omega x+\dfrac{\pi }{4} \right)\)在\(x=0\)处的切线方程为\(y=-3x+1\),则\(\omega =\)_________.
\((3)\)表面积为\(16\pi \)的球面上有四个点\(P,A,B,C\),且\(\Delta ABC\)是边长为\(2\sqrt{3}\)的等边三角形,若平面\(PAB\bot \)平面\(ABC\),则棱锥\(P-ABC\)体积的最大值为_______.
\((4)\)某小区一号楼共有\(7\)层,每层只有\(1\)家住户,已知任意相邻两层楼的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这\(7\)家住户有无快递的可能情况共有_________种.