试题 试卷
题型:选择题 题类:月考试卷 难易度:易
年份:2020
查看解析 收藏 纠错
+选题
年份:2018
\(\left( \left. x^{2}- \dfrac{2}{x^{3}} \right. \right)^{5} \)展开式中的常数项为\((\) \()\)
若\(a=\int _{0}^{2}(1-3{x}^{2})dx+4 \),且\((x+ \dfrac{1}{ax}{)}^{n} \)的展开式中第\(3\)项的二项式系数是\(15\),则展开式中所有项系数之和为( )
若\({\left(1-3x\right)}^{2018}={a}_{0}+{a}_{1}x+...+{a}_{2018}{x}^{2018},x∈R \),则\({a}_{1}·3+{a}_{2}·{3}^{2}+..+{a}_{2018}·{3}^{2018} \)的值为( )
\({\left(x- \sqrt{2}y\right)}^{8} \)的展开式中\({x}^{6}{y}^{2} \)项的系数是\((\) \()\)
\({{(1+2x)}^{5}}\)展开式的二项式系数和为( )
设\((x+3)(2x+3)^{10}=a_{0}+a_{1}(x+3)+a_{2}(x+3)^{2}+…+a_{11}(x+3)^{11}\),则\(a_{1}+a_{2}+…+a_{11}\)的值为( )
在\((x+x{)}^{6}(1+y{)}^{4} \)的展开式中,\(m+n\)称为\({\,\!}^{xm}y^{n}\)项的次数,则所有次数为\(3\)的项的系数之和为\((\) \()\)
\((1{+}\dfrac{1}{x^{2}})(1{+}x)^{6}\)展开式中\(x^{2}\)的系数为\((\) \()\)
等差数列\(\left\{{a}_{n}\right\} \)的第\(5\)项是二项式\({\left( \sqrt{x}- \dfrac{1}{3x}\right)}^{6} \)展开式的常数项,则\({a}_{3}+{a}_{5}+{a}_{7} \)为\((\) \()\)