题型:选择题 题类:月考试卷 难易度:中档
测年份:2018
若\(\left(1+x\right)+{\left(1+x\right)}^{2}+...+{\left(1+x\right)}^{n}={a}_{0}+{a}_{1}\left(1-x\right)+{a}_{2}{\left(1-x\right)}^{2}+...+{a}_{n}{\left(1-x\right)}^{n} \),则\({a}_{0}-{a}_{1}+{a}_{2}-{a}_{3}+...+{\left(-1\right)}^{n}{a}_{n} \)等于 \((\) \()\)
题型:选择题 题类:月考试卷 难易度:中档
测年份:2018
下列说法中正确的个数是( ).
\(①\)若\({{(\dfrac{2x-1}{x})}^{n}}=a_{0}+ \dfrac{a_{1}}{x}+ \dfrac{a_{2}}{x^{2}}+…+ \dfrac{a_{5}}{x^{5}}\),则\(a_{3}\)的值为\(-40\) ;
\(②\)函数\(f(x)=x^{2}+2x+m (x, m∈R)\)的最小值为\(-1\),则\(\int_{_{1}}^{^{2}}f(x)dx\)等于\( \dfrac{16}{3}\);
\(③\)在等差数列\(\{a_{n}\}\)中,\(a_{2}=1\),\(a_{4}=5\),则\(\{a_{n}\}\)的前\(5\)项和\(S_{5}=15\).
\(④\)抛物线\(y=2x^{2}\)的准线方程为\(x=- \dfrac{1}{8}\) \(.\)