职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

总题量:2601选择本页全部试题
  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{2}=9\),\(a_{5}=243\),则首项\(a_{1}=(\quad)\)
    A.\(3\) B.\(\dfrac{1}{3}\) C.\(2\) D.\(\dfrac{1}{2}\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知正项等比数列\(\left\{{{a}_{n}}\right\}\)满足\({{S}_{3}}-{{S}_{1}}=12\),\(2{{S}_{2}}+{{S}_{1}}=14.\)

    \((1)\)求数列\(\left\{{{a}_{n}}\right\}\)的通项公式;

    \((2)\)记\({{b}_{n}}=\dfrac{1}{{{\log}_{2}}{{a}_{2n+1}}{{\log}_{2}}{{a}_{2n-1}}}\),求数列\(\left\{{b}_{n}\right\}\)的前\(n\)项和\({{T}_{n}}.\)

  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)中,若\(a_{1}=1\),\(4a_{2}\),\(2a_{3}\),\(a_{4}\)成等差数列,则\(a_{1}a_{7}=(\quad)\)
    A.\(16\) B.\(32\) C.\(64\) D.\(128\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)是正项等比数列,满足\(a_{3}\)是\(2a_{1}\),\(3a_{2}\)的等差中项,\(a_{4}=16.\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=(-1)^{n}\log_{2}a_{2n+1}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{n}>0\),若\(a_{3}\),\(a_{15}\)是方程\(x^{2}-6x+2=0\)的根,则\(\dfrac{a_{2}a_{16}}{a_{9}}\)的值为\((\quad)\)
    A.\(\dfrac{2+\sqrt{2}}{2}\) B.\(-\sqrt{2}\) C.\(\sqrt{2}\) D.\(-\sqrt{2}\)或\(\sqrt{2}\)
  • 题型:选择题 题类:月考试卷 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)的各项均为正数,且\(a_{1}a_{5}=4\),则\(\log_{2}a_{2}+\log_{2}a_{3}+\log_{2}a_{4}=(\quad)\)
    A.\(10\) B.\(5\) C.\(3\) D.\(4\)
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{2}a_{3}=8\),则\(\dfrac{a_{4}+a_{5}}{a_{1}+a_{2}}=(\quad)\)
    A.\(8\) B.\(6\) C.\(4\) D.\(2\)
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    已知等比数列\(\{a_{n}\}\)的公比为\(q.\)若\(\{a_{n}\}\)为递增数列且\(a_{2}< 0\),则\((\quad)\)
    A.\(q< -1\) B.\(-1< q< 0\) C.\(0< q< 1\) D.\(q>1\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    设正项等比数列\(\{a_{n}\}\)的公比\(q\in N^{*}\),且\((a_{1}-1)a_{3}=8\),\(a_{1}+a_{2}^{2}=18\),设数列\(\{b_{n}\}\)满足\(b_{1}=1\),\((b_{n+1}-1)(b_{n}+3)=-4.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)当\(n\geqslant 2\)时,求\(a_{2}b_{2}+\dfrac{a_{3}b_{3}}{2}+\dfrac{a_{4}b_{4}}{3}+\)…\(+\dfrac{a_{n+1}b_{n+1}}{n}.\)
  • 题型:填空题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足\(a_{n+1}=3a_{n}+4\),\(a_{1}=1\),则\(a_{n}=\)______.