试题 试卷
题型:填空题 题类:月考试卷 难易度:中档
年份:2018
设\((1-2x)^{5}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}+a_{5}x^{5}.\)则\(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\)的值________.
查看解析 收藏 纠错
+选题
满足\(C_{n}^{1}+2C_{n}^{2}+3C_{n}^{3}+\ldots +nC_{n}^{n} < 200\)的最大自然数\(n=\) .
设\(n=\int _{0}^{ \frac{n}{2}}3\sin xdx \),则\((x+ \dfrac{2}{x})(x- \dfrac{2}{x}{)}^{n} \)的展开式中各项系数和为 _________.
若\({\left(x- \dfrac{1}{x}\right)}^{n} \)的二项展开式中所有项的二项式系数和为\(64\),则常数项为___________.