职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    已知\(\{a _{n} \}\)为等差数列,\(\{b _{n} \}\)为等比数列且公比大于\(0\),\(a _{1} =1\),\(b _{1} =2\),\(2a _{3} =5(a _{5} -a _{4} )\),\(2b _{3} =b _{5} -b _{4}\).
    \((\)Ⅰ\()\)求\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设\(c_{n}=(-1)^{n+1}( \dfrac {4n}{a_{n}\cdot a_{n+1}}- \dfrac {1}{b_{n}})(n∈N^{*})\),记数列\(\{c _{n} \}\)的前\(n\)项和为\(S _{n}\),求\(S _{n}\).
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    在①\(2b+c=2a\cos C\); ②\(\triangle ABC\)的面积为\( \dfrac { \sqrt {3}(a^{2}-b^{2}-c^{2})}{4}\);③\(c\sin A=3a\sin B\)这三条件中任选一个,补充在下面问题中,若问题中的三角形存在,求\(\triangle ABC\)的周长;若问题的三角形不存在,说明理由.问题:是否存在\(\triangle ABC\),它的内角\(A\),\(B\),\(C\)的对边分别为\(a\),\(b\),\(c\),且\(a= \sqrt {3} b\),\(c=1\),_______?
  • 题型:选择题 题类:期中考试 难易度:中档

    年份:2020

    四棱锥\(P-ABCD\)的底面\(ABCD\)是矩形,侧面\(PAD⊥\)平面\(ABCD\),\(∠APD=120°\),\(AB=PA=PD=2\),则该四棱锥\(P-ABCD\)外接球的体积为\((\:\:\:\:)\)
    A.\( \dfrac {32π}{3}\) B.\( \dfrac {20 \sqrt {5}π}{3}\) C.\(8 \sqrt {6} π\) D.\(36π\)
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    已知公差不为零的等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),满足\(a _{2} +S _{5} =28\),且\(a _{1}\),\(a _{3}\),\(a _{13}\)成等比数列.
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{b _{n} \}\)满足\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),求数列\(\{b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    如图,在以\(A\)、\(B\)、\(C\)、\(D\)、\(E\)为顶点的五面体中,\(AD⊥\)平面\(ABC\),\(AD/\!/BE\),\(AC=2 \sqrt {2}\),\(AB=2BE=4AD=4.\triangle ABC\)的面积\(S=4\)且\(∠BAC\)为锐角.
    \((1)\)求证:\(AC⊥\)平面\(BCE\);
    \((2)\)求三棱锥\(B-DCE\)的体积\(V\).
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    设函数\(f(x)=\sin x+\sin (x+ \dfrac {π}{6})+\cos (x+ \dfrac {π}{3})\).
    \((1)\)求数\(f(x)\)的最小正周期和对称轴方程.
    \((2)\)锐角\(\triangle ABC\)的三个顶点\(A\),\(B\),\(C\)所对边分别为\(a\),\(b\),\(c\),若\(f(A)= \sqrt {2}\),\(a=2\),\(b= \sqrt {6}\),求\(∠C\)及边\(c\).
    \((3)\)若\(\triangle ABC\)中,\(f(C)=1\),求\(2\cos ^{2}(A- \dfrac {π}{4})+ \sqrt {3}\sin (A-B)\)的取值范围.
  • 题型:填空题 题类:期中考试 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}(n∈N ^{*} )\),若\(a _{1} =1\),\(a _{n+1} +a _{n} =( \dfrac {1}{2} ) ^{n}\),则\( \overset{\lim }{n\rightarrow \infty } a _{2n} =\)______.
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    已知直三棱柱\(A _{1} B _{1} C _{1} -ABC\)中,\(AB=AC=AA _{1} =1\),\(∠BAC=90°\).
    \((1)\)求异面直线\(A _{1} B\)与\(B _{1} C _{1}\)所成角;
    \((2)\)求点\(B _{1}\)到平面\(A _{1} BC\)的距离.
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    如图,四边形\(OACB\)中,\(a\),\(b\),\(c\)为\(ΔABC\)的内角\(A\),\(B\),\(C\)的对边,且满足\(\tan A= \dfrac {\sin B+\sin C}{2-\cos B-\cos C}\).
    \((1)\)证明:\(b+c=2a\);
    \((2)\)若\(OA=2OB=2\),且\(b=c\),设\(∠AOB=θ(0 < θ < π)\),当\(θ\)变化时,求四边形\(OACB\)面积的最大值.
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    记等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\).
    \((1)\)求证:数列\(\{ \dfrac {S_{n}}{n}\}\)是等差数列;
    \((2)\)若\(a_{1}=1,\{ \sqrt {S_{n}}\}\)是公差为\(1\)的等差数列,求使\( \dfrac {S_{k+1}\cdot S_{k+2}}{S_{k}^{2}}\)为整数的正整数\(k\)的取值集合;
    \((3)\)记\(b_{n}=t^{a_{n}} (t\)为大于\(0\)的常数\()\),求证:\( \dfrac {b_{1}+b_{2}+……+b_{n}}{n}\leqslant \dfrac {b_{1}+b_{2}}{2}\).