已知直线\(l _{1}\),\(l _{2}\)的方程分别为\(2mx-2y-m=0\)和\(2x+2my-3=0\),设\(l _{1}\),\(l _{2}\)交于点\(M\),记点\(M\)的轨迹为曲线\(C\),若双曲线\(C_{1}: \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的渐近线与曲线\(C\)没有公共点,则双曲线\(C _{1}\)的离心率的取值范围是\((\:\:\:\:)\)
A.\((1, \dfrac { \sqrt {6}}{2})\)
B.\(( \sqrt {6},+∞)\) C.\((1, \dfrac {4 \sqrt {2}}{3})\) D.\(( \dfrac {2 \sqrt {3}}{3},+∞)\)