如图,在空间直角坐标系\(Dxyz\)中,\(E\),\(F\)分别是正方体\(ABCD-A _{1} B _{1} C _{1} D _{1}\)的棱\(BC\)和\(CD\)的中点,求: \((1)\)异面直线\(A _{1} D\)与\(EF\)所成角的大小; \((2)A _{1} F\)与平面\(B _{1} EB\)所成角的正弦值; \((3)\)平面\(CD _{1} B _{1}\)和平面\(D _{1} B _{1} B\)的夹角的余弦值.
设正方体\(ABCD-A _{1} B _{1} C _{1} D _{1}\)的棱长为\(1\),\(M\),\(E\),\(F\)分别为\(A _{1} B _{1}\),\(B _{1} C _{1}\),\(C _{1} D _{1}\)的中点,求直线\(MD _{1}\)与平面\(EFDB\)所成角的正弦值.