职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    已知函数\(f(x)=4x\ln x-x ^{2} +3\),\(g(x)=x ^{2} +2ax-4\),若对任意的\(x _{1} ∈(0 , 2]\),总存在\(x _{2} ∈[1 , 2]\),使得\(f(x _{1} )+4x _{1} g(x _{2} )\geqslant 0\)成立,则实数\(a\)的取值范围是______
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    平面直角坐标系\(xOy\)中,圆\(O\):\(x ^{2} +y ^{2} =r ^{2} (r > 0)\)与直线\(y=x-4\)相交于两点\(A\),\(B\),若圆\(O\)上存在点\(P(\)可与点\(A\),\(B\)重合\()\),使得\(PA ^{2} +PB ^{2} =4\),则\(r\)的取值范围为______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    定义数列\(\{a _{n} \}\),先给出\(a _{1} =1\),接着复制该项,再添加\(1\)的后继数\(2\),于是\(a _{2} =1\),\(a _{3} =2\),接下来再复制前面所有项,之后再添加\(2\)的后继数\(3\),如此继续\((1 , 1 , 2 , 1 , 1 , 2 , 3 , 1 , 1 , 2 , 1 , 1…)\),设\(S _{n}\)是\(a _{n}\)的前\(n\)项和,则\(S _{2020} =\)______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    已知平面向量\( \overrightarrow {a}\),\( \overrightarrow {b}\),\( \overrightarrow {c}\),\( \overrightarrow {d}\)满足\(| \overrightarrow {a} |=| \overrightarrow {b} |=| \overrightarrow {c} |=1\),\( \overrightarrow {a} ⋅ \overrightarrow {c} = \overrightarrow {b} ⋅ \overrightarrow {c} = \dfrac {1- \overrightarrow {a}\cdot \overrightarrow {b}}{ \overrightarrow {a}\cdot \overrightarrow {d}} > 0\),\( \overrightarrow {c} ⋅ \overrightarrow {d} =0\),若平面向量\( \overrightarrow {s} =x \overrightarrow {a} +y \overrightarrow {b} (x , y > 0\)且\(xy=1)\),则\(| \overrightarrow {s} +2 \overrightarrow {c} |+| \overrightarrow {s} - \overrightarrow {d} |\)的最小值是______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    若圆\(C _{1}\):\((x-m) ^{2} +y ^{2} =16\)与圆\(C _{2}\):\((x-n) ^{2} +y ^{2} =16\)相交,点\(P\)为其在\(x\)轴下方的交点,且\(mn=-8\),则点\(P\)到直线\(x+y-1=0\)距离的最大值为______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    任意实数\(a\),\(b\),定义\(a⊕b= \begin{cases} {ab,ab\geqslant 0} \\ { \dfrac {a}{b},ab < 0}\end{cases}\),设函数\(f(x)=\ln x⊕x\),正项数列\(\{a _{n} \}\)是公比大于\(0\)的等比数列,且\(a _{1010} =1\),\(f(a _{1} )+f(a _{2} )+f(a _{3} )+…+f(a _{2019} )+f(a _{2020} )=-e\),则\(a _{2020} =\)______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    已知正四棱锥\(P-ABCD\)的底面边长为\(4 \sqrt {6}\),高为\(6 \sqrt {2}\),其内切球与面\(PAB\)切于点\(M\),球面上与\(P\)距离最近的点记为\(N\),若平面\(α\)过点\(M\),\(N\)且与\(AB\)平行,则平面\(α\)截该正四棱锥所得截面的面积为______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    对于正整数\(n\),设\(x _{n}\)是关于\(x\)的方程\( \dfrac {1}{x^{2}}-\log _{n+1}x^{n}=n^{2}+3n\)的实数根.记\(a_{n}=[ \dfrac {1}{2x_{n}}]\),其中\([x]\)表示不超过\(x\)的最大整数,则\(a _{1} =\)______;设数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),则\( \sqrt {S_{2020}} =\)______.
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    在\(\triangle ABC\)中,点\(D\)在边\(BC\)上,且满足\(AD=BD\),\(3\tan ^{2} B-2\tan A+3=0\),则\( \dfrac {BD}{CD}\)的取值范围为______
  • 题型:填空题 题类:模拟题 难易度:较难

    年份:2020

    已知数列\(\{a _{n} \}\)满足:对任意\(n∈N*\),\(a _{n} ∈(0 , \dfrac {π}{2} )\),且\(a _{1} = \dfrac {π}{3}\),\(f(a _{n+1} )= \sqrt {f{'}(a_{n})}\),其中\(f(x)=\tan x\),则使得\(\sin a _{1} ×\sin a _{2} ×…×\sin a _{k} < \dfrac {1}{10}\)成立的最小正整数\(k\)为______.