正三棱柱\(ABC-A _{1} B _{1} C _{1}\)中,\(D\)为\(CC _{1}\)中点,\(AB=2\). \((1)\)求证:平面\(ADB _{1} ⊥\)平面\(ABB _{1} A _{1}\); \((2)\)若\(AD\)与平面\(ABB _{1} A _{1}\)所成角为\( \dfrac {π}{4}\),求四棱锥\(A-BCDB _{1}\)的体积.
正四面体\(A-BCD\)中,\(P\),\(Q\),\(M\)分别是侧棱\(AB\),\(AC\),\(AD\)上的动点\((\)不含端点\()\),且满足\(AP < AQ < AM\),分别记二面角\(A-PQ-M\),\(A-QM-P\),\(A-PM-Q\)的平面角为\(α\),\(β\),\(γ\),则\((\:\:\:\:)\)