已知数列\(\{a _{n} \}\)满足\(a _{1} =2\),\(a _{2} =a\),\(a _{n+2} = \dfrac {\max \{a_{n+1},a_{n}\}}{\min \{a_{n+1},a_{n}\}} (n∈N*)\),给出下列两个命题,则
命题①:对任意\(a∈(2 , +∞)\)和\(n∈N*\),均有\(a _{n} \leqslant a\);
命题②:存在\(a > 0\)和\(m∈N*\),使得当\(n\geqslant m\)时,均有\(a _{n+1} \leqslant a _{n} . (\:\:\:\:)\)
注:\(\max \{a , b\}\)和\(\min \{a , b\}\)分别表示\(a\)与\(b\)中的较大和较小者.
A.①正确,②正确
B.①正确,②错误 C.①错误,②正确 D.①错误,②错误