职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷

选择知识点

总题量:1294选择本页全部试题
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2020

    某小区超市采取有力措施保障居民正常生活的物资供应.为做好日常生活必需的甲类物资的供应,超市对社区居民户每天对甲类物资的购买量进行了调查,得到了以下频率分布直方图\((\)如图\()\).

    \((\)Ⅰ\()\)估计该小区居民对甲类物资购买量的中位数;
    \((\)Ⅱ\()\)现将小区居民按照购买量分为两组,即购买量在\([1 , 3)\)单位:\(kg)\)的居民为\(A\)组,购买量在\([3 , 6](\)单位:\(kg]\)的居民为\(B\)组,采用分层抽样的方式从该小区中选出\(5\)户进行生活情况调查,再从这\(5\)户中随机选出\(3\)户,求选出的\(B\)组户数为\(2\)的概率.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    如图,在四棱锥\(A-BCDE\)中,底面\(BCDE\)为矩形,侧面\(ABC⊥\)底面\(BCDE\),\(BC=2\),\(CD= \sqrt {2}\),\(AB=AC\).
    \((1)\)证明:\(AD⊥CE\);
    \((2)\)设\(CE\)与平面\(ABE\)所成的角为\(45°\),求二面角\(C-AD-E\)的余弦值.
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2020

    汉中黎坪景区位于陕西省汉中市南郑区黎坪镇境内,国家\(AAA\)级旅游景区,东西长\(18\)公里,南北宽\(13\)公里,总面积约\(94.3\)平方千米,是以森林景观、地貌景观、水体景观以及现代入文景观和田园风光景观为主,集山景、林景、水景、石景、气候景观和田园景观为一体的山岳型旅游景区.某学校社团为了解游客的具体情形以及采集旅客对景区的建议,特别在\(2020\)年\(6\)月\(1\)日旅游旺季对进园游客进行取样调查,从当日\(12000\)名游客中抽取\(100\)人进行统计分析,结果如下:
    年龄 频数 频率
    \([0 , 10)\) \(10\) \(0.1\) \(5\) \(5\)
    \([10 , 20)\)
    \([20 , 30)\) \(25\) \(0.25\) \(12\) \(13\)
    \([30 , 40)\) \(20\) \(0.2\) \(10\) \(10\)
    \([40 , 50)\) \(10\) \(0.1\) \(6\) \(4\)
    \([50 , 60)\) \(10\) \(0.1\) \(3\) \(7\)
    \([60 , 70)\) \(5\) \(0.05\) \(1\) \(4\)
    \([70 , 80)\) \(3\) \(0.03\) \(1\) \(2\)
    \([80 , 90)\) \(2\) \(0.02\) \(0\) \(2\)
    合计 \(100\) \(1.00\) \(45\) \(55\)
    \((1)\)完成表一中的空位①\(~\)④,并在答题纸中补全频率分布直方图,并估计\(2020\)年\(6\)月\(1\)日当日接待游客中\(30\)岁以下的游客人数;
    \((2)\)完成表二,并判断能否有\(97.5\%\)的把握认为在游客中“年龄达到\(50\)岁以上\((\)含\(50\)岁\()\)”与“性别相关;
    \((3)\)按分层抽样\((\)分\(50\)岁以上\((\)含\(50\)岁\()\)与\(50\)岁以下两层\()\)抽取被调查的\(100\)位游客中的\(10\)人作为幸运游客免费领取黎坪内部景区门票,再从这\(10\)人中选取\(2\)人接受电视台采访,设这\(2\)人中年龄在\(50\)岁以上\((\)含\(50\)岁\()\)的人数为\(ξ\),求\(ξ\)的分布列.
    \(50\)岁以上 \(50\)岁以下 合计
    男生
    女生
    合计
    \(P(K ^{2} \geqslant k)\) \(0.15\) \(0.10\) \(0.05\) \(0.025\) \(0.010\) \(0.005\) \(0.001\)
    \(k\) \(2.072\) \(2.706\) \(3.841\) \(5.024\) \(6.635\) \(7.879\) \(10.828\)
    \((\)参考公式:\(K ^{2} = \dfrac {n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}\),其中\(n=a+b+c+d.)\)
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(S _{n} =2a _{n} -n(n∈N*)\).
    \((1)\)求\(a _{1}\),\(a _{2}\),\(a _{3}\),的值,猜想数列\(\{a _{n} \}\)的通项公式并加以证明;
    \((2)\)求\(a _{1} +a _{3} +a _{5} +…+a _{2n+3} (n∈N*)\).
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和\(S _{n}\)满足\(S _{n} = \dfrac {n^{2}+5n}{2}\),\(n∈N*\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)设\(b _{n} =2 ^{a_{n}} +(-1) ^{n} a _{n}\),\(n∈N*\),求数列\(\{b _{n} \}\)的前\(2n\)项和\(T _{2n}\).
  • 题型:解答题 题类:月考试卷 难易度:较难

    年份:2020

    设等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(5S _{5} =S _{10}\),\(a _{4} =2a _{6} +20\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)若数列\(\{b _{n} \}\)满足\( \dfrac {b_{1}}{a_{1}} + \dfrac {b_{2}}{a_{2}} +…+ \dfrac {b_{n}}{a_{n}} = \dfrac {1}{2^{n}} -1\),\(n∈N*\),证明:\(b _{n} \leqslant \dfrac {5}{8}\).
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    如图所示,已知椭圆\(E\)的离心率为\( \dfrac { \sqrt {2}}{2}\),\(A\),\(B\),\(C\),\(F\)分别为椭圆的上顶点、下顶点、右顶点和右焦点,且\(\triangle BCF\)的面积为\(2 \sqrt {2}-2\).
    \((1)\)求椭圆\(E\)的方程;
    \((2)\)是否存在过点\(B\)的直线\(l\),使得\(l\)与椭圆\(E\)交于另一点\(D\),且\(\triangle ABD\)是以\(BD\)为底边的等腰三角形,若存在,请求出此时直线\(l\)的方程,若不存在,请说明理由.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知函数\(g(x)=x ^{2} -2x+a\)在\(x∈[1 , m]\)时有最大值为\(1\),最小值为\(0\).
    \((1)\)求实数\(a\)的值;
    \((2)\)设\(f(x)= \dfrac {g(x)}{x}\),若不等式\(f(2 ^{x} )-k\boldsymbol{⋅}2 ^{x} \leqslant 0\)在\(x∈[0 , 1]\)上恒成立,求实数\(k\)的取值范围.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知定义在\(R\)上的函数\(f(x)= \dfrac {b-2^{x}}{2^{x+1}+a} (a∈R , b∈R)\)是奇函数.
    \((1)\)求\(a\),\(b\)的值;
    \((2)\)当\(x∈(1 , 2)\)时,不等式\(2 ^{x} +kf(x)-3 > 0\)恒成立,求实数\(k\)的取值范围.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a_{1}= \dfrac {3}{2}\),且\(a _{n+1} =λa _{n} +1(n∈N* , λ∈R\)且\(λ\neq - \dfrac {2}{3} ).\)
    \((1)λ\)为何值时,数列\(\{a _{n} +1\}\)是等比数列;
    \((2)\)若数列\(\{a _{n} +1\}\)是等比数列,求数列\(\{a _{n} \}\)的前\(n\)项和\(S _{n}\).