
已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}} =1(a > b > 0)\)的左焦点\(F(- \sqrt {3},0)\),椭圆的两顶点分别为\(A(-a , 0)\),\(B(a , 0)\),\(M\)为椭圆上除\(A\),\(B\)之外的任意一点,直线\(MA\),\(BM\)的斜率之积为\(- \dfrac {1}{4}\).
\((\)Ⅰ\()\)求椭圆\(C\)的标准方程;
\((\)Ⅱ\()\)若\(P\)为椭圆\(C\)短轴的上顶点,斜率为\(k\)的直线\(l\)不经过\(P\)点且与椭圆\(C\)交于\(E\),\(F\)两点,设直线\(PE\),\(PF\)的斜率分别为\(k _{1}\),\(k _{2}\),且\(k _{1} +k _{2} =-1\),试问直线\(l\)是否过定点,若是,求出这定点;若不存在,请说明理由.