空间直角坐标系\(O-xyz\)中,经过点\(P(x_{0},y_{0},z_{0})\)且法向量为\(\overrightarrow {m}=(A,B,C)\)的平面方程为\(A(x-x_{0})+B(y-y_{0})+C(z-z_{0})=0\),经过点\(P(x_{0},y_{0},z_{0})\)且一个方向向量为\(\overrightarrow {n}=(μ,υ,ω)(μυω≠0)\)的直线\(l\)的方程为\(\dfrac{x-x_{0}}{\mu}=\dfrac{y-y_{0}}{\upsilon}=\dfrac{z-z_{0}}{\omega}\),阅读上面的材料并解决下面问题:现给出平面\(α\)的方程为\(3x-5y+z-7=0\),经过\((0,0,0)\)的直线\(l\)的方程为\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-1}\),则直线\(l\)与平面\(α\)所成角的正弦值为\((\quad)\)
A.\(\dfrac{\sqrt{10}}{10}\)
B.\(\dfrac{\sqrt{10}}{35}\) C.\(\dfrac{\sqrt{10}}{5}\) D.\(\dfrac{\sqrt{5}}{7}\)