
如图,在斜三棱柱\(ABC-A _{1} B _{1} C _{1}\)中,点\(O\)、\(E\)分别是\(A _{1} C _{1}\)、\(A _{1} B _{1}\)的中点,\(A _{1} C\)与\(AC _{1}\)交于点\(F\),\(AO⊥\)平面\(A _{1} B _{1} C _{1} .\)已知\(∠BCA=90°\),\(AA _{1} =AC=BC=2\).
\((1)\)求证:\(EF/\!/\)平面\(BB _{1} C _{1} C\);
\((2)\)求\(A _{1} C _{1}\)与平面\(AA _{1} B _{1}\)所成角的正弦值.