题型:解答题 题类:期末考试 难易度:中档
年份:2018
已知等差数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),公差\(d > 0\),且\({{a}_{2}}{{a}_{3}}=40\),\({{a}_{1}}+{{a}_{4}}=13\),公比为\(q(0 < q < 1)\)的等比数列\(\left\{ {{b}_{n}} \right\}\)中,\({{b}_{1}},{{b}_{3}},{{b}_{5}}\in \{\dfrac{1}{60},\dfrac{1}{32},\dfrac{1}{20},\dfrac{1}{8},\dfrac{1}{2}\}\)
\((\)Ⅰ\()\)求数列\(\left\{ {{a}_{n}} \right\}\),\(\left\{ {{b}_{n}} \right\}\)的通项公式\({{a}_{n}},{{b}_{n}}\);
\((\)Ⅱ\()\)若数列\(\left\{ {{c}_{n}} \right\}\)满足\({{c}_{2n-1}}={{a}_{n}},{{c}_{2n}}={{b}_{n}}\),求数列\(\left\{ {{c}_{n}} \right\}\)的前\(2n\)项和\({{T}_{2n}}\).
题型:解答题 题类:期末考试 难易度:中档
年份:2018
\(18.\)设数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),已知\({{a}_{1}}=2,{{a}_{2}}=8\),\({{S}_{n+1}}+4{{S}_{n-1}}=5{{S}_{n}}\left( n\geqslant 2 \right)\).
\((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((2)\)若\({{b}_{n}}={{\left( -1 \right)}^{n+1}}{lo}{{{g}}_{2}}{{a}_{n}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(2n\)项和\({{T}_{2n}}\)。
题型:解答题 题类:期末考试 难易度:中档
年份:2018
设数列\({{a}_{n}}\)的前\(n\)项和为\({{S}_{n}}\),且\({{S}_{n}}=2-\dfrac{1}{{{2}^{n-1}}},\{{{b}_{n}}\}\)为等差数列,且\({{a}_{1}}={{b}_{1}},{{a}_{2}}({{b}_{2}}-{{b}_{1}})={{a}_{1}}\).
\((1)\)求数列\({{a}_{n}}\)和\(\{{{b}_{n}}\}\)的通项公式;
\((2)\)设\({{c}_{n}}=\dfrac{{{b}_{n}}}{{{a}_{n}}}\),求数列\(\{{{c}_{n}}\}\)的前\(n\)项和\({{T}_{n}}\).
题型:解答题 题类:期末考试 难易度:中档
年份:2018
已知正项等比数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),且\(2{{a}_{2}}={{S}_{2}}+\dfrac{1}{2}\),\({{a}_{3}}=2\).
\((\)Ⅰ\()\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((\)Ⅱ\()\)若\({{b}_{n}}={lo}{{{g}}_{2}}{{a}_{n}}+3\),数列\(\left\{ \dfrac{1}{{{b}_{n}}{{b}_{n+1}}} \right\}\)的前\(n\)项和为\({{T}_{n}}\),求满足\({{T}_{n}} > \dfrac{1}{3}\)的正整数\(n\)的最小值.
题型:解答题 题类:期末考试 难易度:中档
年份:2018
已知数列\(\left\{ {{a}_{n}} \right\}\)是等差数列,数列\(\left\{ {{b}_{n}} \right\}\)是等比数列,且\({{b}_{2}}=3,{{b}_{3}}=9{{a}_{1}}={{b}_{1}},{{a}_{14}}={{b}_{4}}\)
\((1)\)求\(\left\{ {{a}_{n}} \right\}\)和\(\left\{ {{b}_{n}} \right\}\)的通项公式;
\((2)\)设\({{c}_{n}}={{a}_{n}}+{{b}_{n}}\),求数列\(\left\{ {{c}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).
题型:解答题 题类:期末考试 难易度:中档
年份:2018
设数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\)\(.\)已知\(2{{S}_{n}}={{3}^{n}}+3\).
\((\)Ⅰ\()\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((\)Ⅱ\()\)若数列\(\left\{ {{b}_{n}} \right\}\)满足\({{a}_{n}}{{b}_{n}}={{\log }_{3}}{{a}_{n}}\),求\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).
题型:解答题 题类:期末考试 难易度:中档
年份:2018
已知数列\(\left\{ {{a}_{n}} \right\}\)满足\({{a}_{1}}=1\),\(n{{a}_{n+1}}=3\left( n+1 \right){{a}_{n}}\),设\({{b}_{n}}=\dfrac{{{a}_{n}}}{n}\).
\((1)\)求\(b_{1}\),\(b_{2}\),\(b_{3}\);
\((2)\)判断数列\(\left\{ {{b}_{n}} \right\}\)是否为等比数列,并说明理由;
\((3)\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式.