已知集合\(R^{n}=\{(x_{1},x_{2},⋯,x_{n})|x_{i}\in R,i=1,2,⋯,n\}(n\geqslant 1)\),定义\(R^{n}\)上两点\(A(a_{1},a_{2},⋯,a_{n})\),\(B(b_{1},b_{2},⋯,b_{n})\)的距离\(d(A,B)=\sum\limits_{i=1}^{n}|a_{i}-b_{i}|.\)
\((Ⅰ)\)当\(n=2\)时,若\(A(1,2)\),\(B(4,6)\),求\(d(A,B)\)的值;
\((Ⅱ)\)当\(n=2\)时,证明\(R^{2}\)中任意三点\(A\),\(B\),\(C\)满足关系\(d(A,B)\leqslant d(A,C)+d(C,B)\);
\((Ⅲ)\)当\(n=3\)时,设\(A(0,0,0)\),\(B(4,4,4)\),\(P(x,y,z)\),其中\(x\),\(y\),\(z\in Z\),\(d(A,P)+d(P,B)=d(A,B).\)求满足\(P\)点的个数\(n\),并证明从这\(n\)个点中任取\(11\)个点,其中必存在\(4\)个点,它们共面或者以它们为顶点的三棱锥体积不大于\(\dfrac{8}{3}.\)