定义\(\dfrac{n}{p_{1}+p_{2}+\cdots+p_{n}}\)为\(n\)个正数\(p_{1}\),\(p_{2}\),…,\(p_{n}\)的“均倒数”.若已知数列\(\{a_{n}\}\)的前\(n\)项的“均倒数”为\(\dfrac{1}{2n+1}\),又\(b_{n}=\dfrac{a_{n}+1}{4}\),则\(\dfrac{1}{b_{1}b_{2}}+\dfrac{1}{b_{2}b_{3}}+⋯+\dfrac{1}{b_{14}b_{15}}=(\quad)\)
A.\(\dfrac{13}{14}\)
B.\(\dfrac{14}{15}\) C.\(\dfrac{1}{14}\) D.\(\dfrac{11}{15}\)