职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:4572 选择本页全部试题
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知正项等比数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(S_{3}=7a_{1}\),且\(a_{1}\),\(a_{2}+2\),\(a_{3}\)成等差数列.
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=\begin{cases}{a_{n},n\text{为奇数}}\\ {n,n\text{为偶数}}\end{cases}\),求数列\(\{b_{n}\}\)的前\(2n\)项和\(T_{2n}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知等差数列\(\{a_{n}\}\)中,\(d>0\),\(a_{2}=3\),且\(a_{1}+1\),\(a_{3}-1\),\(a_{4}+1\)成等比数列.
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)已知\(b_{n}=\dfrac{1}{a_{n}\cdot a_{n+1}}\),\(\{b_{n}\}\)前\(n\)项和为\(S_{n}\),若\(9S_{n}< -n+8\),求\(n\)的最大值.
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(a_{2}=1\),且\(a_{n}=a_{n-1}-a_{n-2}(n\geqslant 3)\),记数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),则\(S_{20}=(\quad)\)
    A.\(0\) B.\(1\) C.\(2\) D.\(14\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)是递增等比数列,且\(a_{3}=4\),\(a_{2}+a_{4}=10\),\(S_{n}\)为等差数列\(\{b_{n}\}\)的前\(n\)项和,且\(b_{1}=a_{1}\),\(S_{2}=a_{2}+1.\)
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)若\(c_{n}=a_{n}b_{n}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知\(\{a_{n}\}\)是等差数列,\(a_{1}=2\),\(a_{2}+a_{3}+a_{4}=18.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=|(\sqrt{2})^{a_{n}}-1000|\),求数列\(\{b_{n}\}\)的前\(15\)项和\(T_{15}.\)
  • 题型:填空题 题类:模拟题 难易度:较易

    年份:2021

    在一个有限数列的每相邻两项之间插入这两项的等差中项,从而形成一个新的数列,我们把这样的操作称为该数列的一次扩充.如数列\(1\),\(9\)扩充一次后得到\(1\),\(5\),\(9\),扩充两次后得到\(1\),\(3\),\(5\),\(7\),\(9\),以此类推.设数列\(1\),\(3\),\(t(t\)是常数\()\),扩充\(n\)次后所得所有项的和记为\(S_{n}\),则\(S_{n}=\)______.
  • 题型:选择题 题类:期中考试 难易度:较易

    年份:2021

    定义\(\dfrac{n}{p_{1}+p_{2}+\cdots+p_{n}}\)为\(n\)个正数\(p_{1}\),\(p_{2}\),…,\(p_{n}\)的“均倒数”.若已知数列\(\{a_{n}\}\)的前\(n\)项的“均倒数”为\(\dfrac{1}{2n+1}\),又\(b_{n}=\dfrac{a_{n}+1}{4}\),则\(\dfrac{1}{b_{1}b_{2}}+\dfrac{1}{b_{2}b_{3}}+⋯+\dfrac{1}{b_{14}b_{15}}=(\quad)\)
    A.\(\dfrac{13}{14}\) B.\(\dfrac{14}{15}\) C.\(\dfrac{1}{14}\) D.\(\dfrac{11}{15}\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    \(.\)已知数列\(\{a_{n}\}\)是首项\(a_{1}=1\),公差为\(d\)的等差数列,数列\(\{b_{n}\}\)是首项\(b_{1}=2\),公比为\(q\)的正项等比数列,且公比\(q\)等于公差\(d\),\(a_{3}+a_{6}=2b_{3}.\)
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)若数列\(\{c_{n}\}\)满足\(c_{n}=a_{n}\boldsymbol{⋅}b_{n}(n\in N^{*})\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足:\(a_{1}+3a_{2}+3^{2}a_{3}+⋯+3^{n-1}a_{n}=\dfrac{n}{3}(n\in N^{*}).\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)b_{n}=\dfrac{1}{3^{n+1}(1-a_{n})(1-a_{n+1})}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知各项为正数的等比数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{3}=4.\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=\log_{2}a_{n}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}.\)