已知等差数列\(\{a _{n} \}\)的公差为\(d\),等比数列\(\{b _{n} \}\)的公比为\(q.\)设\(\{a _{n} \}\),\(\{b _{n} \}\)的前\(n\)项和分别为\(S _{n}\),\(T _{n}\),若\( \dfrac {S_{n}}{n^{2}}= \dfrac {T_{n}+1}{2^{n}}\),\(n∈N*\).
\((1)\)求数列\(\{a _{n} \}\),\(\{b _{n} \}\)的通项公式;
\((2)\)设\(c_{n}= \dfrac {b_{n}}{b_{n}^{2}+1}\),数列\(\{c _{n} \}\)的前\(n\)项和为\(K _{n}\),求证:\(K_{n} < \dfrac {3}{2}\).