职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    已知公差不为零的等差数列\(\{a_{n}\}\)中,\(a_{3}=7\),且\(a_{1}\),\(a_{4}\),\(a_{13}\)成等比数列.

    \((1)\)求数列\(\{a_{n}\}\)的通项公式;

    \((2)\)记数列\(\{a_{n}·2^{n}\}\)的前\(n\)项和\(S_{n}\),求\(S_{n}\).

  • 题型:填空题 题类:期末考试 难易度:较难

    年份:2018

    已知\({{S}_{n}}\)为数列\(\{{a}_{n}\} \)的前\(n\)项和,若\({{a}_{2}}=3\)且\({{S}_{n+1}}=2{{S}_{n}} +1\),则\({{a}_{4}}=\)  ______

  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(S_{n}=n^{2}+n\),数列\(\{b_{n}\}\)的通项公式为\(b_{n}=x^{n-1}\).

    \((1)\)求数列\(\{a_{n}\}\)的通项公式;

    \((2)\)设\(c_{n}=a_{n}b_{n}\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\).

    \(①\)求\(T_{n}\);

    \(②\)若\(x=2\),求数列\(\{\dfrac{nTn+1-2n}{{{T}_{n+2}}-2}\}\)的最小项的值.

  • 题型:填空题 题类:期末考试 难易度:较难

    年份:2018

    若等比数列\(\{ a_{n}\}\)的前\(n\)项和\(S_{n}{=}2^{n{-}1}{+}a\),则\(a_{3}a_{5}{=}\) ______________

  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    设数列\(\{{{a}_{n}}\}\)满足\({{a}_{n}}=3{{a}_{n-1}}+2(n\geqslant 2,n\in {{N}^{*}})\),且\({{a}_{1}}=2\),\({{b}_{n}}={{\log }_{3}}({{a}_{n}}+1)\).

    \((1)\)证明:数列\(\{{{a}_{n}}+1\}\)为等比数列;  

    \((2)\)求数列\(\{{{a}_{n}}{{b}_{n}}\}\)的前\(n\)项和\({{S}_{n}}\);

    \((3)\)设\({{c}_{n}}=\dfrac{{{3}^{n}}}{{{a}_{n}}{{a}_{n+1}}}\),证明:\(\sum\limits_{i=1}^{n}{{{c}_{n}}} < \dfrac{1}{4}\).

  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}=a(S_{n}-a_{n}+1)(a\)为常数,\(a\neq 0\),\(a\neq 1)\).
    \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)设\(b_{n}=a_{n}^{2}+S_{n}⋅a_{n}\),若数列\(\{b_{n}\}\)为等比数列,求\(a\)的值;
    \((\)Ⅲ\()\)在满足条件\((\)Ⅱ\()\)的情形下,\(c_{n}= \dfrac {1}{a_{n}+1}- \dfrac {1}{a_{n+1}-1}\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}.\)求证:\(T_{n} > 2n- \dfrac {1}{2}\).
  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    设\(\{a_{n}\}\)是等差数列,\(\{b_{n}\}\)是各项都为正数的等比数列,且\(a_{1}=b_{1}=1\),\(a_{3}+b_{5}=21\),\(a_{5}+b_{3}=13\).
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)设数列\(\{ \dfrac {a_{n}}{b_{n}}\}\)的前\(n\)项和为\(S_{n}\)试比较\(S_{n}\)与\(6\)的大小.
  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    已知数列\(\dfrac{1}{1\times 4}\)\(\dfrac{1}{4\times 7}\)\(\dfrac{1}{7\times 10}\), \(...\) ,\(\dfrac{1}{\left( 3n-2 \right)\times \left( 3n+1 \right)}\), \(...\),记数列的前\(n\)项和\({S}_{n} \)

    \((\)Ⅰ\()\)计算\(S_{1}\),\(S_{2}\),\(S_{3}\),\(S_{4}\);

    \((\)Ⅱ\()\)猜想\(S_{n}\)的表达式,并用数学归纳法证明.

  • 题型:填空题 题类:期末考试 难易度:较难

    年份:2018

    已数列\( \dfrac {1}{1×3}\),\( \dfrac {1}{3×5}\),\( \dfrac {1}{5×7}\),\(…\),\( \dfrac {1}{(2n1)(2+1)}\),\(…\)的前\(n\)和\(Sn\),计算\(S1= \dfrac {1}{3}S2= \dfrac {2}{5}\),\(S= \dfrac {3}{7}\),照规,\(Sn=\) ______ .
  • 题型:解答题 题类:期末考试 难易度:较难

    年份:2018

    设数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\)\(.\)已知\(2{{S}_{n}}={{3}^{n}}+3\)

    \((\)Ⅰ\()\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;

    \((\)Ⅱ\()\)若数列\(\left\{ {{b}_{n}} \right\}\)满足\({{a}_{n}}{{b}_{n}}={{\log }_{3}}{{a}_{n}}\),求\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).