题型:解答题 题类:期末考试 难易度:较难
年份:2018
设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(S_{n}=n^{2}+n\),数列\(\{b_{n}\}\)的通项公式为\(b_{n}=x^{n-1}\).
\((1)\)求数列\(\{a_{n}\}\)的通项公式;
\((2)\)设\(c_{n}=a_{n}b_{n}\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\).
\(①\)求\(T_{n}\);
\(②\)若\(x=2\),求数列\(\{\dfrac{nTn+1-2n}{{{T}_{n+2}}-2}\}\)的最小项的值.
题型:解答题 题类:期末考试 难易度:较难
年份:2018
设数列\(\{{{a}_{n}}\}\)满足\({{a}_{n}}=3{{a}_{n-1}}+2(n\geqslant 2,n\in {{N}^{*}})\),且\({{a}_{1}}=2\),\({{b}_{n}}={{\log }_{3}}({{a}_{n}}+1)\).
\((1)\)证明:数列\(\{{{a}_{n}}+1\}\)为等比数列;
\((2)\)求数列\(\{{{a}_{n}}{{b}_{n}}\}\)的前\(n\)项和\({{S}_{n}}\);
\((3)\)设\({{c}_{n}}=\dfrac{{{3}^{n}}}{{{a}_{n}}{{a}_{n+1}}}\),证明:\(\sum\limits_{i=1}^{n}{{{c}_{n}}} < \dfrac{1}{4}\).
题型:解答题 题类:期末考试 难易度:较难
年份:2018
题型:解答题 题类:期末考试 难易度:较难
年份:2018
已知数列\(\dfrac{1}{1\times 4}\),\(\dfrac{1}{4\times 7}\),\(\dfrac{1}{7\times 10}\), \(...\) ,\(\dfrac{1}{\left( 3n-2 \right)\times \left( 3n+1 \right)}\), \(...\),记数列的前\(n\)项和\({S}_{n} \).
\((\)Ⅰ\()\)计算\(S_{1}\),\(S_{2}\),\(S_{3}\),\(S_{4}\);
\((\)Ⅱ\()\)猜想\(S_{n}\)的表达式,并用数学归纳法证明.
题型:解答题 题类:期末考试 难易度:较难
年份:2018
设数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\)\(.\)已知\(2{{S}_{n}}={{3}^{n}}+3\).
\((\)Ⅰ\()\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((\)Ⅱ\()\)若数列\(\left\{ {{b}_{n}} \right\}\)满足\({{a}_{n}}{{b}_{n}}={{\log }_{3}}{{a}_{n}}\),求\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).