试题 试卷
题型:选择题 题类:其他 难易度:易
年份:2018
等比数列\(\{ a_{n}\}\),满足\(a_{n}{ > }0{,}2a_{1}{+}a_{2}{=}a_{3}\),则公比\(q{=}({ })\)
查看解析 收藏 纠错 相似题
+选题
若数列\(\{a_{n}\}\)满足\( \dfrac{1}{{a}_{n+1}}- \dfrac{2}{{a}_{n}}=0 \),则称\(\{a_{n}\}\)为“梦想数列”,已知正项数列\(\{ \dfrac{1}{{b}_{n}} \}\)为“梦想数列”,且\(b_{1}+b_{2}+b_{3}=1\),则\(b_{6}+b_{7}+b_{8}=\)
在等比数列\(\left\{ {{a}_{n}} \right\}\)中,\({a}_{1}+{a}_{2}=3,{a}_{2}+{a}_{3}=6,则{a}_{7} \)为
已知正项等比数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),且\({{a}_{1}}{{a}_{6}}=2{{a}_{3}}\),\({{a}_{4}}\)与\(2{{a}_{6}}\)的等差中项为\(\dfrac{3}{2}\),则\({{S}_{5}}=(\) \()\)
设等比数列\(\{{a}_{n}\} \)的前\(n\)项和为\({{S}_{n}}\),满足\({{a}_{n}} > 0,q > 1\),且\({{a}_{3}}+{{a}_{5}}=20\),\({{a}_{2}}\cdot {{a}_{6}}=64\),则\({{S}_{5}}=(\) \()\)
已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和\({{S}_{n}}={{2}^{n}}-1\),则数列\(\left\{ {{\log }_{2}}{{a}_{n}} \right\}\)的前\(12\)项和等于\((\) \()\)