题型:解答题 题类:其他 难易度:较易
年份:2018
正项数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{1}}=1\),奇数项\(a_{1}\),\(a_{3}\),\(a_{5}....a_{2k-1}....\)构成公差为\(d\)的等差数列,偶数项\(a_{2}\),\(a_{4}\),\(a_{6}\),\(....\),\(a_{2k}\),\(...\)构成公比\(q=2\)的等比数列,且\(a\)\({\,\!}_{1}\),\(a\)\({\,\!}_{2}\),\(a\)\({\,\!}_{3}\)成等比数列, \(a\)\({\,\!}_{4}\),\(a\)\({\,\!}_{5}\),\(a\)\({\,\!}_{7}\)成等差数列.
\((\)Ⅰ\()\)求\({{a}_{2}}\)和\(d\);
\((\)Ⅱ\()\)求数列\(\left\{ {{a}_{n}} \right\}\)的前\(2n\)项和\({{S}_{2n}}\).
题型:解答题 题类:月考试卷 难易度:较易
年份:2018
已知等比数列\(\left\{{a}_{n}\right\} \)的各项均为正数,且\(2{a}_{1}+3{a}_{2}=1,{{a}_{3}}^{2}=9{a}_{2}{a}_{6} \).
\((I)\)求数列\(\left\{{a}_{n}\right\} \)的通项公式.
\((II)\)设\({b}_{n}={\log }_{3}{a}_{1}+{\log }_{3}{a}_{2}+…+{\log }_{3}{a}_{n} \),判断并说明数列\(\left\{ \dfrac{1}{{b}_{n}}\right\} \)的前\(n\)项\({{T}_{{n}}}\)与\(-2\)大小.
题型:解答题 题类:其他 难易度:较易
年份:2018
已知单调的等比数列\(\{{{a}_{n}}\}\)的前\(n\)项和为\({{S}_{n}}\),若\({{S}_{{3}}}=39\),且\(3{{a}_{4}}\)是\({{a}_{6}}\),\(-{{a}_{5}}\)的等差中项.
\((\)Ⅰ\()\)求数列\(\{{{a}_{n}}\}\)的通项公式;
\((\)Ⅱ\()\)若数列\(\{{{b}_{n}}\}\)满足\({{b}_{n}}={{\log }_{3}}{{a}_{2n-1}}\),且\(\{{{b}_{n}}\}\)前\(n\)项的和为\({{T}_{n}}\),求\(\sum\limits_{i=1}^{n}{\dfrac{1}{{{T}_{i}}}} < 2\).