题型:解答题 题类:其他 难易度:较易
年份:2018
已知数列\(\{a_{n}\}\)是等差数列,其前\(n\)项和为\(S_{n}\),数列\(\left\{ \left. b_{n} \right. \right\}\)是公比大于\(0\)的等比数列,且\(b_{1}=-2a_{1}=2\), \(a_{3}+b_{2}=-1\), \(S_{3}+2b_{3}=7\).
\((1)\)求数列\(\{a_{n}\}\)和\(\left\{ \left. b_{n} \right. \right\}\)的通项公式;
\((2)\)令\(c_{n}=\begin{cases} 2,n为奇数 \\ \dfrac{-2a_{n}}{b_{n}},n为偶数 \end{cases}\),求数列\(\left\{ \left. c_{n} \right. \right\}\)的前\(n\)项和\(T_{n}\).
题型:解答题 题类:其他 难易度:较易
年份:2018
正项数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{1}}=1\),奇数项\(a_{1}\),\(a_{3}\),\(a_{5}....a_{2k-1}....\)构成公差为\(d\)的等差数列,偶数项\(a_{2}\),\(a_{4}\),\(a_{6}\),\(....\),\(a_{2k}\),\(...\)构成公比\(q=2\)的等比数列,且\(a\)\({\,\!}_{1}\),\(a\)\({\,\!}_{2}\),\(a\)\({\,\!}_{3}\)成等比数列, \(a\)\({\,\!}_{4}\),\(a\)\({\,\!}_{5}\),\(a\)\({\,\!}_{7}\)成等差数列.
\((\)Ⅰ\()\)求\({{a}_{2}}\)和\(d\);
\((\)Ⅱ\()\)求数列\(\left\{ {{a}_{n}} \right\}\)的前\(2n\)项和\({{S}_{2n}}\).
题型:解答题 题类:其他 难易度:较易
年份:2018
已知单调的等比数列\(\{{{a}_{n}}\}\)的前\(n\)项和为\({{S}_{n}}\),若\({{S}_{{3}}}=39\),且\(3{{a}_{4}}\)是\({{a}_{6}}\),\(-{{a}_{5}}\)的等差中项.
\((\)Ⅰ\()\)求数列\(\{{{a}_{n}}\}\)的通项公式;
\((\)Ⅱ\()\)若数列\(\{{{b}_{n}}\}\)满足\({{b}_{n}}={{\log }_{3}}{{a}_{2n-1}}\),且\(\{{{b}_{n}}\}\)前\(n\)项的和为\({{T}_{n}}\),求\(\sum\limits_{i=1}^{n}{\dfrac{1}{{{T}_{i}}}} < 2\).
题型:解答题 题类:其他 难易度:较易
年份:2018
等差数列\(\{a_{n}\}\)的各项均为正数,\(a_{1}=1\),前\(n\)项和为\(S_{n}\);数列\(\{b_{n}\}\)为等比数列,\(b_{1}=1\),且\(b_{2}S_{2}=6\),\(b_{2}+S_{3}=8\).
\((1)\)求数列\(\{a_{n}\}\)与\(\{b_{n}\}\)的通项公式;
\((2)\)求\(\dfrac{1}{{{S}_{1}}}+\dfrac{1}{{{S}_{2}}}+\cdots +\dfrac{1}{{{S}_{n}}}\).