职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:选择题 题类:单元测试 难易度:较易

    年份:2021

    数列\(\left\{a_{n}\right\}\)中,\(a_{1}=2\),且\(a_{n}+a_{n-1}=\dfrac{n}{a_{n}-a_{n}{}_{-}{}_{1}}+2(n\geqslant 2)\),则数列\(\left\{\dfrac{1}{(a_{n}-1)^{2}}\right\}\)前\(2021\)项和为\((\quad)\)

    A.\(\dfrac{2021}{1010}\) B.\(\dfrac{2021}{1011}\) C.\(\dfrac{2019}{1010}\) D.\(\dfrac{4040}{2021}\)
  • 题型:选择题 题类:单元测试 难易度:较易

    年份:2021

    对于数列\(\{{{a}_{n}}\}\),定义\({A}_{n}=\dfrac{{a}_{1}+2{a}_{2}+⋯+{2}^{n-1}{a}_{n}}{n}\)为数列\(\{{{a}_{n}}\}\)的“好数”,已知某数列\(\{{{a}_{n}}\}\)的“好数”\({A}_{n}={2}^{n+1}\),记数列\(\{{{a}_{n}}-kn\}\)的前\(n\)项和为\({{S}_{n}}\),若\({{S}_{n}}\leqslant S{}_{6}^{{}}\)对任意的\(n\in{{N}^{*}}\)恒成立,则实数\(k\)的取值范围为\((\quad)\)

    A.\([\dfrac{9}{4},\dfrac{16}{7}]\) B.\([\dfrac{16}{7},\dfrac{7}{3}]\) C.\([\dfrac{7}{3},\dfrac{12}{5}]\) D.\([\dfrac{12}{5},\dfrac{5}{2}]\)
  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)的各项均为正数,且\(2a_{1}+3a_{2}=1\),\({a_{3}}^{2}=9a_{2}a_{6}.\)

    \((1)\)求数列\(\{a_{n}\}\)的通项公式;

    \((2)\)设\(b_{n}=\log_{3}a_{1}+\log_{3}a_{2}+\)…\(+\log_{3}a_{n}\),求数列\(\left\{\dfrac{1}{b_{n}}\right\}\)的前\(n\)项和.

  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)中,\(a_{1}\text{=}1\),\({a}_{n+1}=\dfrac{{a}_{n}}{{a}_{n}+3}(n\in{N}^{*}).\)
    \((1)\)求\(a_{2}\),\(a_{3}\);
    \((2)\)求证:\(\{\dfrac{1}{a_{n}}\text{+}\dfrac{1}{2}\}\)是等比数列,并求\(\{a_{n}\}\)的通项公式\(a_{n}\);
    \((3)\)数列\(\{b_{n}\}\)满足\({b}_{n}=({3}^{n}-1)⋅\dfrac{n}{{2}^{n}}·{a}_{n}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),若不等式\((-1{)}^{n}λ{\rm< }{T}_{n}+\dfrac{n}{{2}^{n-1}}\)对一切\(n\in{N}^{*}\)恒成立,求\(\lambda\)的取值范围.
  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021

    已知等差数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\(S_{3}=0\),\(S_{5}=-5.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)b_{n}=-a_{n}+2\),求数列\(\{\dfrac{1}{b_{n}b_{n+1}}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021

    已知公比大于\(0\)的等比数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{2}=4\),\(a_{1}+5\)是\(S_{2}\)和\(a_{3}\)的等差中项.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=\dfrac{n}{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021




    设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}=2a_{n}-2^{n}\)
    \((Ⅰ)\)求\(a_{1}\),\(a_{2}\)
    \((Ⅱ)\)设\(c_{n}=a_{n+1}-2a_{n}\),证明:数列\(\{c_{n}\}\)是等比数列
    \((Ⅲ)\)求数列\(\{\dfrac{n+1}{2c_{n}}\}\)的前\(n\)项和为\(T_{n}.\)
  • 题型:选择题 题类:单元测试 难易度:较易

    年份:2021

    数列\(\{F_{n}\}\):\(F_{1}=F_{2}=1\),\(F_{n}=F_{n-1}+F_{n-2}(n>2)\),最初记载于意大利数学家斐波那契在\(1202\)年所著的《算盘全书》.若将数列\(\{F_{n}\}\)的每一项除以\(2\)所得的余数按原来项的顺序构成新的数列\(\{a_{n}\}\),则数列\(\{a_{n}\}\)的前\(2021\)项和为\((\quad)\)
    A.\(1345\) B.\(1346\) C.\(1347\) D.\(1348\)
  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\(S_{n}=2^{n+1}-2(n\in N^{*}).\)
    \((1)\)求\(a_{n}\);
    \((2)\)已知_____,求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
    从下列三个条件中任选一个,补充在上面问题的横线中,然后对第\((2)\)问进行解答.
    条件:①\(b_{n}=(2n+1)a_{n}(n\in N^{*})\),②\(b_{n}=\dfrac{2^{n}}{(a_{n}-1)(a_{n+1}-1)}(n\in N^{*})\),③\(b_{n}=(-1)^{n}\cdot\log_{2}a_{2n+1}(n\in N^{*})\),
  • 题型:解答题 题类:单元测试 难易度:较易

    年份:2021

    设数列\(\{a_{n}\}\)是等差数列,数列\(\{b_{n}\}\)是公比大于\(0\)的等比数列,已知\(a_{1}=1\),\(b_{1}=3\),\(b_{2}=3a_{3}\),\(b_{3}=12a_{2}+3.\)
    \((1)\)求数列\(\{a_{n}\}\)和数列\(\{b_{n}\}\)的通项公式;
    \((2)\)设数列\(\{c_{n}\}\)满足\(c_{n}=\begin{cases}{1,n\leqslant 5}\\ {b_{n-5},n\geqslant 6}\end{cases}\),求数列\(\{a_{n}c_{n}\}\)的前\(n\)项和\(T_{n}.\)