职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知递增等比数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{2}=2\),\(S_{3}=7\),数列\(\{\log_{2}(S_{n}+1)\}\)的前\(n\)项和为\(T_{n}\),则\(T_{n}= \)______ .
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知\(a_{n}=2n+1\),记数列\(\{\dfrac{1}{a_{n}a_{n+1}}\}\)的前\(n\)项和为\(T_{n}\),且对于任意的\(n\in N^{*}\),\(T_{n}\leqslant\dfrac{a_{n}+11}{t}\),则实数\(t\)的最大值是 ______.
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知正项等比数列\(\{a_{n}\}\)中,\(a_{4}-a_{2}=6\),\(a_{5}-a_{1}=15\),则\(a_{n}=\)__________,又数列\(\{b_{n}\}\)满足\(b_{1}=\dfrac{1}{2},b_{n+1}=\dfrac{1}{1-b_{n}}\);若\(S_{n}\)为数列\(\{a_{n+1}b_{n}\}\)的前\(n\)项和,那么\(S_{3n}=\)__________.
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    数列\(1\),\((1+2)\),\((1+2+2^{2})\),\((1+2+2^{2}+2^{3})\),\((1+2+2^{2}+2^{3}+2^{4})\),…的前\(n\)项之和\(S_{n}= \)______ .
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知正项等比数列\(\{a_{n}\}\)中,\(a_{4}-a_{2}=6\),\(a_{5}-a_{1}=15\),则\(a_{n}=\)______,又数列\(\{b_{n}\}\)满足\(b_{1}=\dfrac{1}{2}\),\(b_{n+1}=\dfrac{1}{1-b_{n}}\);若\(S_{n}\)为数列\(\{a_{n}+b_{n}\}\)的前\(n\)项和,那么\(S_{11}=\)______.
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    若数列\(\{a_{n}\}\)满足\(a_{1}=3\),\(a_{n+1}=\dfrac{3n-1}{3n+2}a_{n}\),则\(a_{n}= \)______ ,数列\(\{a_{n}\boldsymbol{⋅}a_{n+1}\}\)的前\(10\)项和是 ______ .
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)为等比数列,函数\(y=\dfrac{1}{2}(a^{x-2}+1)\)过定点\((a_{1},a_{2})\),设\(b_{n}=\log_{2}a_{n}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),则\(S_{n}\)的最大值为 ______ .
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足\(a_{1}=1\)且\(a_{1}+\dfrac{1}{2}a_{2}+\dfrac{1}{3}a_{3}+\)…\(+\dfrac{1}{n}a_{n}=a_{n+1}-1(n\in N*)\),数列\(\{\dfrac{a_{n}}{2^{n}}\}\)的前\(n\)项和为\(S_{n}\),则使不等式\(S_{n}< m\)对任意正整数\(n\)恒成立的最小整数\(m\)为______.
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知正项数列\(\{a_{n}\}\)满足\(a_{1}=1\),\((\dfrac{1}{a_{n+1}}+\dfrac{1}{a_{n}})(\dfrac{1}{a_{n+1}}-\dfrac{1}{a_{n}})=4\),数列\(\{b_{n}\}\)满足\(\dfrac{1}{b_{n}}=\dfrac{1}{a_{n+1}}+\dfrac{1}{a_{n}}\),记\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),则\(T_{20}\)的值为 ______ .
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    已知正项等比数列\(\{a_{n}\}\)中,\(a_{3}=3a_{1}a_{2}\),\(a_{4}=\dfrac{256}{3}\),用\(< x>\)表示实数\(x\)的小数部分,如:\(< 1.52>=0.52\),\(< \dfrac {4}{3}>=\dfrac{1}{3}=0.\overset{.}{3}\),记\(b_{n}=< a_{n}>\),则数列\(\{a_{n}\}\)的通项公式\(a_{n}=\)______;数列\(\{b_{n}\}\)的前\(15\)项之和\(S_{15}=\)______.