题型:解答题 题类:期末考试 难易度:难
年份:2018
设各项均为正数的数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),满足\(4{{S}_{n}}=a_{^{_{n+1}}}^{2}-4n-1\),且\({{a}_{1}}=1\),公比大于\(1\)的等比数列\(\left\{ {{b}_{n}} \right\}\)满足\({{b}_{2}}=3\),\({{b}_{1}}+{{b}_{3}}=10\).
\((1)\)求证数列\(\left\{ {{a}_{n}} \right\}\)是等差数列,并求其通项公式;
\((2)\)若\({{c}_{n}}=\dfrac{{{a}_{n}}}{3{{b}_{n}}}\),求数列\(\left\{ {{c}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\);
\((3)\)在\((2)\)的条件下,若\({{c}_{n}}\leqslant {{t}^{2}}+\dfrac{4}{3}t-2\)对一切正整数\(n\)恒成立,求实数\(t\)的取值范围.