题型:解答题 题类:期末考试 难易度:难
年份:2018
已知数列\(\left\{ {{a}_{n}} \right\}\)的首项\({{a}_{1}}=1\),\({{S}_{n}}\)是数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和,且满足\(2\left( {{S}_{n}}+1 \right)=\left( n+3 \right){{a}_{n}}\).
\((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((2)\)设数列\(\left\{ {{b}_{n}} \right\}\)满足\({{b}_{n}}=\dfrac{1}{{{a}_{n}}{{a}_{n+1}}}\),记数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和为\({{T}_{n}}\),求证:\({{T}_{n}} < 3\).
题型:解答题 题类:期末考试 难易度:难
年份:2018
题型:解答题 题类:期末考试 难易度:难
年份:2018
\(21.\)设数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),已知\({{a}_{1}}=2,{{a}_{2}}=8\),\({{S}_{n+1}}+4{{S}_{n-1}}=5{{S}_{n}}\left( n\geqslant 2 \right)\).
\((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((2)\)若\({{b}_{n}}={{\left( -1 \right)}^{n+1}}{lo}{{{g}}_{2}}{{a}_{n}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(2n\)项和\({{T}_{2n}}\)。
题型:解答题 题类:期末考试 难易度:难
年份:2018
\({{S}_{n}}\)为数列\(\left\{ {{a}_{n}} \right\}\)的前项\(n\)和,已知\({{a}_{n}} > 0\),\(a_{n}^{2}+2{{a}_{n}}=4{{S}_{n}}+3\).
\((I)\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((II)\)设\({{b}_{n}}=\dfrac{1}{{{a}_{n}}{{a}_{n+1}}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前项\(n\)和\(.\)