职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:118 选择本页全部试题
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{6}-a_{2}=15\),\(a_{5}-a_{3}=6\),则公比\(q=\)______.
  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{2}=9\),\(a_{5}=243\),则首项\(a_{1}=(\quad)\)
    A.\(3\) B.\(\dfrac{1}{3}\) C.\(2\) D.\(\dfrac{1}{2}\)
  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    已知正项等比数列\(\{a_{n}\}\)中,\(a_{3}=\dfrac{a_{4}}{a_{2}}\),若\(a_{1}+a_{2}+a_{3}=7\),则\(a_{8}=(\quad)\)
    A.\(32\) B.\(48\) C.\(64\) D.\(128\)
  • 题型:解答题 题类:期末考试 难易度:较易

    年份:2021

    已知等比数列\(\left\{\begin{array}{l}a_{n}\end{array}\right\}\)的公比\(q=3\),并且满足\(a_{2}\),\(a_{3}+18\),\(a_{4}\)成等差数列.

    \((1)\)求数列\(\left\{\begin{array}{l}a_{n}\end{array}\right\}\)的通项公式;

    \((2)\)设数列\(\left\{\begin{array}{l}b_{n}\end{array}\right\}\)满足\(b_{n}=\dfrac{1}{a_{n}}+\log_{3}a_{n}\),记\(S_{n}\)为数列\(\left\{\begin{array}{l}b_{n}\end{array}\right\}\)的前\(n\)项和,求使\(2S_{n}-n^{2}>20\)成立的正整数\(n\)的最小值.

  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    在等比数列\(\{a_{n}\}\)中,\(a_{n}>0\),若\(a_{3}\),\(a_{15}\)是方程\(x^{2}-6x+2=0\)的根,则\(\dfrac{a_{2}a_{16}}{a_{9}}\)的值为\((\quad)\)
    A.\(\dfrac{2+\sqrt{2}}{2}\) B.\(-\sqrt{2}\) C.\(\sqrt{2}\) D.\(-\sqrt{2}\)或\(\sqrt{2}\)
  • 题型:解答题 题类:期末考试 难易度:较易

    年份:2021

    设数列\(\{a_{n}\}\)是各项均为正数的等比数列,\(a_{3}=8\),\(a_{4}+a_{5}=48.\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设数列\(\{b_{n}\}\)的通项公式为\(b_{n}=a_{n}+n-1\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}.\)
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)中,\(a_{3}=-9\),\(a_{11}=-4\),则\(a_{7}=\)______.
  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)中,若\(a_{2}=2\),\(a_{4}=4\),则\(a_{6}=(\quad)\)
    A.\(8\) B.\(6\) C.\(±8\) D.\(±6\)
  • 题型:填空题 题类:期末考试 难易度:较易

    年份:2021

    若数列\(\{a_{n}\}\)是等比数列,\(a_{1}=8\),\(a_{4}=1\),则\(a_{2}+a_{4}+a_{6}=\)______.
  • 题型:选择题 题类:期末考试 难易度:较易

    年份:2021

    等比数列\(\{a_{n}\}\)中,若\(a_{1}=1\),\(a_{5}=\dfrac{1}{16}\),则\(a_{3}=(\quad)\)
    A.\(\dfrac{1}{8}\) B.\(\dfrac{1}{4}\) C.\(±\dfrac{1}{4}\) D.\(±\dfrac{1}{8}\)