职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:681 选择本页全部试题
  • 题型:填空题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a _{1} =1\),\(a _{n+1} =\ln a _{n} + \dfrac {1}{a_{n}} +1\),记\(S _{n} =[a _{1} ]+[a _{2} ]+…+[a _{n} ]\),\([t]\)表示不超过\(t\)的最大整数.则\(S _{2020}\)的值为______\(.(\)参考数据:\(\ln 2=0.6931\),\(\ln 3=1.0986)\)
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和\(S _{n}\)满足\(S _{n} = \dfrac {n^{2}+5n}{2}\),\(n∈N*\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)设\(b _{n} =2 ^{a_{n}} +(-1) ^{n} a _{n}\),\(n∈N*\),求数列\(\{b _{n} \}\)的前\(2n\)项和\(T _{2n}\).
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    已知\(\{a _{n} \}\)为等差数列,\(\{b _{n} \}\)为等比数列且公比大于\(0\),\(a _{1} =1\),\(b _{1} =2\),\(2a _{3} =5(a _{5} -a _{4} )\),\(2b _{3} =b _{5} -b _{4}\).
    \((\)Ⅰ\()\)求\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设\(c_{n}=(-1)^{n+1}( \dfrac {4n}{a_{n}\cdot a_{n+1}}- \dfrac {1}{b_{n}})(n∈N^{*})\),记数列\(\{c _{n} \}\)的前\(n\)项和为\(S _{n}\),求\(S _{n}\).
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知等差数列\(\{a _{n} \}\),其公差为\(d\),等比数列\(\{b _{n} \}\),其公比为\(q\),且\(a _{1} =b _{1}\),\(d=q\),\(a _{3} =5\),\(a _{5} +a _{7} =22\).
    \((1)\)求\(a _{n}\)及\(b _{n}\);
    \((2)\)令\(c _{n} =a _{n} \boldsymbol{⋅}b _{n}\),\(n∈N ^{*}\),求数列\(\{c _{n} \}\)的前\(n\)项和\(S _{n}\).
  • 题型:解答题 题类:期中考试 难易度:中档

    年份:2020

    已知公差不为零的等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),满足\(a _{2} +S _{5} =28\),且\(a _{1}\),\(a _{3}\),\(a _{13}\)成等比数列.
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{b _{n} \}\)满足\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),求数列\(\{b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知公比大于\(1\)的等比数列\(\{a _{n} \}\)满足\(a _{2} +a _{3} =12\),\(a _{4} =16\),\(b _{n} =\log _{2} a _{n}\).
    \((1)\)求数列\(\{a _{n} \}\)、\(\{b _{n} \}\)的通项公式;
    \((2)\)若数列\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),求\(c_{n}= \dfrac {(n-1)a_{n}}{2S_{n}}(n∈N^{*})\)的前\(n\)项和\(T _{n}\).
  • 题型:填空题 题类:月考试卷 难易度:中档

    年份:2020

    正整数数列\(\{a _{n} \}\)满足\(a_{n+1}= \begin{cases} { \dfrac {1}{2}a_{n},a_{n}\text{是偶数}} \\ {3a_{n}+1,a_{n}\text{是奇数}}\end{cases}\),已知\(a _{6} =4\),\(\{a _{n} \}\)的前\(6\)项和的最大值为\(S\),把\(a _{1}\)的所有可能取值从小到大排成一个新数列\(\{b _{n} \}\),\(\{b _{n} \}\)所有项和为\(T\),则\(S-T=\)______.
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)是各项均为正数的等比数列,\(a _{3} = \dfrac {1}{16}\),\(a _{1} -a _{2} = \dfrac {1}{8}\),数列\(\{b _{n} \}\)满足\(b _{1} =-3\),且\(1+b _{n+1}\)与\(1-b _{n}\)的等差中项是\(a _{n}\).
    \((\)Ⅰ\()\)求数列\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)若\(c _{n} =(-1) ^{n} b _{n}\),\(\{c _{n} \}\)的前\(n\)项和为\(S _{n}\),求\(S _{2n}\).
  • 题型:解答题 题类:月考试卷 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a_{1}= \dfrac {3}{2}\),且\(a _{n+1} =λa _{n} +1(n∈N* , λ∈R\)且\(λ\neq - \dfrac {2}{3} ).\)
    \((1)λ\)为何值时,数列\(\{a _{n} +1\}\)是等比数列;
    \((2)\)若数列\(\{a _{n} +1\}\)是等比数列,求数列\(\{a _{n} \}\)的前\(n\)项和\(S _{n}\).
  • 题型:填空题 题类:月考试卷 难易度:中档

    年份:2020

    已知\(S _{n}\)是数列\(\{a _{n} \}\)的前\(n\)项和,满足\(S _{n} = \dfrac {1}{2}n^{2}+ \dfrac {3}{2} n\),则\(a _{n} =\)______;数列\(\{ \dfrac {1}{a_{n}a_{n+1}}\}\)的前\(n\)项和\(T _{n} =\)______.