题型:解答题 题类:期中考试 难易度:易
年份:2018
已知等差数列\(\{a_{n}\}\)的公差\(d\neq 0\),\(a_{1}=0\),其前\(n\)项和为\(S_{n}\),且\({{a}_{2}}+2,{{S}_{3}},{{S}_{4}}\)成等比数列.
\((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
\((\)Ⅱ\()\)若\({b}_{n}= \dfrac{(2n+1{)}^{2}}{{S}_{n+1}} \),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\({T}_{n}-2n < \dfrac{1}{2} \).