职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:365 选择本页全部试题
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    将数列\(\{a_{n}\}\)中的项按如下规律,排成如表:
    \(a_{1}\)
    \(a_{2}\),\(a_{3}\)
    \(a_{4}\),\(a_{5}\),\(a_{6}\),\(a_{7}\)
    \(a_{8}\),\(a_{9}\),\(a_{10}\),\(a_{11}\),\(a_{12}\),\(a_{13}\),\(a_{14}\),\(a_{15}\)
    ……
    已知各行的第一个数\(a_{1}\),\(a_{2}\),\(a_{4}\),\(a_{8}\),⋯构成数列\(\{b_{n}\}\),\(b_{3}=5\)且\(\{b_{n}\}\)的前\(n\)项和\(S_{n}\)满足\(S_{n+1}+S_{n-1}=2S_{n}+2(n\in N^{*}\)且\(n\geqslant 2).\)从第三行起,每一行中的数按从左到右的顺序均构成等差数列,且公差为同一个常数.
    \((Ⅰ)\)当\(n\geqslant 2\)时,求\(b_{n}\);
    \((Ⅱ)\)若\(a_{130}=19\),求第\(5\)行的所有项的和.
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知等差数列\(\{a_{n}\}\)中,\(d>0\),\(a_{2}=3\),且\(a_{1}+1\),\(a_{3}-1\),\(a_{4}+1\)成等比数列.
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)已知\(b_{n}=\dfrac{1}{a_{n}\cdot a_{n+1}}\),\(\{b_{n}\}\)前\(n\)项和为\(S_{n}\),若\(9S_{n}< -n+8\),求\(n\)的最大值.
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    在①\(S_{n}=na_{n+1}+n(n+1),n\in N^{*}\);②\(S_{n+1}-a_{n}=S_{n}-2,n\in N^{*}\);③\(nS_{n+1}-(n+1)S_{n}=-n(n+1),n\in N^{*}.\)这三个条件中任选一个,补充在下面问题中.问题:已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{2}=4\),______.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)求\(S_{n}\)的最大值.
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知\(\{a_{n}\}\)是等差数列,\(a_{1}=2\),\(a_{2}+a_{3}+a_{4}=18.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=|(\sqrt{2})^{a_{n}}-1000|\),求数列\(\{b_{n}\}\)的前\(15\)项和\(T_{15}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    \(.\)已知数列\(\{a_{n}\}\)是首项\(a_{1}=1\),公差为\(d\)的等差数列,数列\(\{b_{n}\}\)是首项\(b_{1}=2\),公比为\(q\)的正项等比数列,且公比\(q\)等于公差\(d\),\(a_{3}+a_{6}=2b_{3}.\)
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)若数列\(\{c_{n}\}\)满足\(c_{n}=a_{n}\boldsymbol{⋅}b_{n}(n\in N^{*})\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知首项是\(5\)的数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n+1}+1=S_{n}+2a_{n}+2^{n+1}\),数列\(\{b_{n}\}\)满足\(b_{n}=\dfrac{a_{n}-1}{2^{n}}.\)
    \((Ⅰ)\)证明:\(\{b_{n}\}\)是等差数列,并求\(\{b_{n}\}\)的通项公式;
    \((Ⅱ)\)求数列\(\{a_{2n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    设数列\(\{a_{n}\}\)是等比数列,数列\(\{b_{n}\}\)是等差数列,若\(a_{2}=b_{2}=3\),\(a_{3}=b_{5}=9.\)
    \((1)\)若\(c_{n}=\dfrac{n\cdot b_{n}}{a_{n}}\),数列\(\{c_{n}\}\)中的最大项是第\(k\)项,求\(k\)的值;
    \((2)\)设\(d_{n}=a_{n}\boldsymbol{⋅}b_{n}\),求数列\(\{d_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    设等差数列\(\{a_{n}\}\)的前\(n\)项和是\(S_{n}\),\(\{b_{n}\}\)是各项均为正数的等比数列,且\(a_{1}=b_{1}=1\),\(a_{5}=3b_{2}.\)在①\(a_{3}+b_{3}=14\),②\(a_{1}b_{5}=81\),③\(S_{4}=4S_{2}\)这三个条件中任选一个,解下列问题:
    \((Ⅰ)\)分别求出数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
    \((Ⅱ)\)若\(c_{n}=\dfrac{1}{(a_{n}+3)\log_{3}3b_{n}}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\)满足\(S_{n}-n=2a_{n}.\)
    \((1)\)求\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=\dfrac{n+1}{a_{n+1}-1}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(-\dfrac{3}{2}< T_{n}\leqslant-\dfrac{1}{2}.\)
  • 题型:解答题 题类:期中考试 难易度:较易

    年份:2021

    设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),已知\(a_{1}=1\),\(S_{n}-a_{n+1}=-1.\)
    \((1)\)求\(\{a_{n}\}\)通项公式;
    \((2)\)对任意的正整数\(n\),设\(c_{n}=\left\{\begin{array}{ll}\dfrac{2}{lo{g}_{2}{a}_{n+1}⋅lo{g}_{2}{a}_{n+3}},n为奇数\\ \dfrac{lo{g}_{2}{a}_{n}}{{a}_{n+1}},n为偶数\end{array}\right.\),求数列\(\{c_{n}\}\)的前\(2n\)项和.