职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:299 选择本页全部试题
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(S_{n}=n^{2}+n+2.\)
    \((Ⅰ)\)求数列\(\{a_{n}\}\)的通项公式;
    \((Ⅱ)\)若\(b_{n}=\dfrac{1}{a_{n}a_{n+1}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\),\(\{b_{n}\}\),\(\{c_{n}\}\)满足\(∀n\in N*\),\(b_{n}=a_{2n-1}\),\(c_{n}=a_{2n}\),\(b_{n+1}=b_{n}+2\),\(c_{n+1}=2+c_{1}+c_{2}+\)…\(+c_{n}\),\(a_{1}=a_{2}=2.\)
    \((1)\)求数列\(\{b_{n}\}\),\(\{c_{n}\}\)的通项公式;
    \((2)\)求数列\(\{a_{n}\}\)的前\(20\)项的和.
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知等比数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=\dfrac{3^{n+1}}{2}-m.\)
    \((1)\)求\(m\)的值,并求出数列\(\{a_{n}\}\)的通项公式;
    \((2)\)令\(b_{n}=(-1)^{n}\log_{3}a_{n}\),设\(T_{n}\)为数列\(\{b_{n}\}\)的前\(n\)项和,求\(T_{2n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知等差数列\(\{a_{n}\}\)满足\(a_{1}=2\),\(a_{4}+a_{16}=40.\)数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=2^{n}-1.\)
    \((1)\)求数列\(\{a_{n}\}\)与\(\{b_{n}\}\)的通项公式;
    \((2)\)令\(c_{n}=a_{n}b_{n}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知在数列\(\{a_{n}\}\)中,\(a_{1}=3\),\(a_{n}=a_{n-1}+2^{n-1}(n\geqslant 2).\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=\log_{2}(a_{n+1}-1)\),求\(\{\dfrac{1}{b_{n}b_{n+1}}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足\(3a_{n+1}=a_{n}+\dfrac{1}{3^{n}},a_{1}=\dfrac{2}{3}\),设\(b_{n}=3^{n}\cdot a_{n}.\)
    \((1)\)证明:数列\(\{b_{n}\}\)为等差数列;
    \((2)\)求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)中,前\(n\)项和为\(S_{n}\),且满足\(S_{n}=\dfrac{2}{3}(4^{n}-1)\),\(n\in N*\),设\(b_{n}=\log_{2}a_{n}.\)
    \((Ⅰ)\)分别求\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
    \((Ⅱ)\)求数列\(\{\dfrac{4}{(b_{n}+1)(b_{n}+3)}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知\(\{a_{n}\}\)是等差数列,\(a_{2}=4\),\(S_{5}=35\),且\(a_{1}\),\(a_{k}(k\in N^{*})\),\(a_{6}\)是等比数列\(\{b_{n}\}\)的前三项.
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)数列\(c_{n}=\begin{cases}{a_{n},n\text{为奇数}}\\ {\sqrt[4]{b_{n}},n\text{为偶数}}\end{cases}\),求数列\(\{c_{n}\}\)的前\(20\)项的和.
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    已知\(\{a_{n}\}\)是单调递增的等比数列,其前\(n\)项和为\(S_{n}\),\(a_{1}=2\),且\(2a_{2}\),\(a_{4}\),\(3a_{3}\)成等差数列.
    \((1)\)求\(a_{n}\)和\(S_{n}\);
    \((2)\)设\(b_{n}=\log_{2}(S_{n}+2)\),\(c_{n}=\dfrac{1}{b_{n}b_{n+1}}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:月考试卷 难易度:较易

    年份:2021

    在①\(a_{4}\)是\(a_{3}\)与\(a_{5}-8\)的等差中项;②\(S_{2}\),\(S_{3}+4\),\(S_{4}\)成等差数列中任选一个,补充在下列横线上,并解答.
    在公比为\(2\)的等比数列\(\{a_{n}\}\)中,\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和,若_____.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=(n+1)\log_{2}a_{n}\),求数列\(\{\dfrac{1}{b_{n}}\}\)的前\(n\)项和\(T_{n}.\)