题型:选择题 题类:月考试卷 难易度:较易
新 测年份:2021
题型:解答题 题类:月考试卷 难易度:较易
新年份:2021
设公差不为\(0\)的等差数列\(\left\{{{a}_{n}}\right\}\)的首项为\(1\),且\({{a}_{2}}\),\({{a}_{5}}\),\({{a}_{14}}\)构成等比数列.
\(\left(1\right)\)求数列\(\left\{{{a}_{n}}\right\}\)的通项公式,并求数列\(\left\{\dfrac{{{a}_{n+1}}}{{{2}^{n}}}\right\}\)的前\(n\)项和为\({{T}_{n}}\);
\(\left(2\right)\)令\({{c}_{n}}={{a}_{n+1}}{{a}_{n+2}}\text{cos}\left(n+1\right)\pi\),若\({{c}_{1}}+{{c}_{2}}+\ldots+{{c}_{n}}\geqslant t{{n}^{2}}\)对\(n\in{{N}^{*}}\)恒成立,求实数\(t\)的取值范围.