职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=3^{n}+k(k\)为常数\()\),那么下述结论正确的是\((\)  \()\)
    A.\(k\)为任意实数时,\(\{a_{n}\}\)是等比数列 B.\(k=-1\)时,\(\{a_{n}\}\)是等比数列 C.\(k=0\)时,\(\{a_{n}\}\)是等比数列 D.\(\{a_{n}\}\)不可能是等比数列
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    在一个数列中,如果对任意\(n∈N^{*}\),都有\(a_{n}a_{n+1}·a_{n+2}=K(K\)为常数\()\),那么这个数列叫做等积数列,\(K\)叫做这个数列的公积,已知数列\(\{a_{n}\}\)是等积数列,且\(a_{1}=1\),\(a_{2}=2\),公积\(K=8\),则\(a_{1}+a_{2}+a_{3}+…+a_{12}\)等于\((\)    \()\)

    A.\(24\) B.\(28\) C.\(32\) D.\(36\)
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    \(.\) 已知函数\(f(x)=x\)\({\,\!}^{3}\)\(-\)\( \dfrac{3}{2}\)\(x\)\({\,\!}^{2}\)\(+\)\( \dfrac{3}{4}\)\(x+\)\( \dfrac{1}{8}\),则\(\sum\limits_{k=1}^{_{\mathbf{2}{ }\mathbf{016}}}{f}\) \(\left( \left. \dfrac{k}{2 017} \right. \right)\)的值为\((\)  \()\)
    A.\(0\)                                                  B.\(504\)

    C.\(1 008\)                                            D.\(2 016\)
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    数列\(\{a_{n}\}\)的通项公式是\(a_{n}= \dfrac{1}{ \sqrt{n}+ \sqrt{n+1}}\),若前\(n\)项和为\(10\),则项数为\((\)  \()\)

    A.\(11\)                                              B.\(99\)

    C.\(120\)                                            D.\(121\)
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    已知数列\(\left\{ {{a}_{n}} \right\}\)的通项为\({{a}_{n}}={{\left( -1 \right)}^{n}}\left( 4n-3 \right)\),则数列\(\left\{ {{a}_{n}} \right\}\)的前\(50\)项和\({{T}_{50}}=(\)      \()\)

    A.\(98\) B.\(99\) C.\(100\) D.\(101\)
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    我国古代数学著作\(《\)九章算术\(》\)中有如下问题“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤。”其意思为“今有人持金出五关,第\(1\)关收税金为持金的\(\dfrac{1}{2}\),第\(2\)关收税金为剩余金的\(\dfrac{1}{3}\),第\(3\)关收税金为剩余金的\(\dfrac{1}{4}\),第\(4\)关收税金为剩余金\(\dfrac{1}{5}\),第\(5\)关收税金为剩余金的\(\dfrac{1}{6}\)。\(5\)关所收税金之和,恰好重\(1\)斤”则在此问题中,第\(5\)关收税金

    A. \(\dfrac{1}{36}\)斤
    B. \(\dfrac{1}{30}\)斤
    C. \(\dfrac{1}{25}\)斤
    D. \(\dfrac{1}{20}\)斤
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    已知数列\(\{ a_{n}\}\)的前\(n\)项和\(S_{n}{=}n^{2}{-}2n{-}1\),则\(a_{1}{+}a_{17}{=}({  })\)

    A.\(31\)                              B.\(29\)                               C.\(30\)                               D.\(398\)
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=2^{n}-1\),\(n=1\),\(2\),\(3\),\(…\),那么数列\(\{a_{n}\}(\)  \()\)
    A.是等差数列但不是等比数列 B.是等比数列但不是等差数列 C.既是等差数列又是等比数列 D.既不是等差数列也不是等比数列
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    已知数列\(\{a_{n}\}\):\( \dfrac{1}{2}\),\( \dfrac{1}{3}+ \dfrac{2}{3}\),\( \dfrac{1}{4}+ \dfrac{2}{4}+ \dfrac{3}{4}\),\( \dfrac{1}{5}+ \dfrac{2}{5}+ \dfrac{3}{5}+ \dfrac{4}{5}\),\(…\),那么数列\(\{b_{n}\}=\left\{ \left. \dfrac{1}{a_{n}a_{n+1}} \right. \right\}\)前\(n\)项的和为\((\)  \()\)


    A.\(4\left( \left. 1- \dfrac{1}{n+1} \right. \right)\) B.\(4\left( \left. \dfrac{1}{2}- \dfrac{1}{n+1} \right. \right)\)

    C.\(1- \dfrac{1}{n+1}\) D.\( \dfrac{1}{2}- \dfrac{1}{n+1}\)
  • 题型:选择题 题类:其他 难易度:中档

    年份:2018

    已知数列\(\{a_{n}\}\)中,\(a_{1}=1\),且对任意的\(m\),\(n∈N^{*}\),都有\(a_{m+n}=a_{m}+a_{n}+mn\),则\(\sum_{^{i=1}}^{_{2 017}} \dfrac{1}{a_{i}}=(\)  \()\)

    A.\( \dfrac{2 017}{2 018}\)                          B.\( \dfrac{2 016}{2 017}\)

    C.\( \dfrac{2 018}{1 009}\)                          D.\( \dfrac{2 017}{1 009}\)