职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:251 选择本页全部试题
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2020

    正项等比数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(a _{1} =1\),\(S _{2} +4S _{4} =S _{6}\).
    \((1)\)求\(\{a _{n} \}\)的通项公式;
    \((2)\)求数列\(\{a _{n} +n\}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),已知\(a _{1} =2\),\(6S _{n} =3na _{n+1} -2n(n+1)(n+2)\),\(n∈N*\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)证明:\( \dfrac {1}{a_{1}}+ \dfrac {1}{a_{2}}+…+ \dfrac {1}{a_{n}} < \dfrac {5}{6}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    等差数列\(\{a _{n} \}\)和等比数列\(\{b _{n} \}\)满足\(a _{1} =1\),\(a _{1} b _{1} +a _{2} b _{2} +…+a _{n} b _{n} =(n-1)\boldsymbol{⋅}2 ^{n+1} +2\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\),\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)若数列\(\{c _{n} \}\)满足:\(b _{n} c _{n} =a _{n} +c _{n}\),求证:\(c _{1} +c _{2} +…+c _{n} < 3\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a _{1} =1\),\(a _{n} = \sqrt {3}a_{n-1}+ \sqrt {3}-1(n\geqslant 2,n∈N^{*})\),\(b _{n} =a _{n} +1\).
    \((\)Ⅰ\()\)求证:数列\(\{b _{n} \}\)是等比数列;
    \((\)Ⅱ\()\)已知\(c _{n} = \dfrac {2a_{n}}{[2( \sqrt {3})^{n-1}-1](2n-1)(2n+1)}\),求数列\(\{c _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a _{1} =1\),\(\{a _{n} \}\)的前\(n\)项和\(S _{n}\)满足\(S _{n+1} =2S _{n} +n+1\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)记数列\(\{ \dfrac {1}{a_{n}}\}\)的前\(n\)项和为\(T _{n}\),证明:\(T_{n} < \dfrac {5}{3}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知正项等差数列\(\{a _{n} \}\)与等比数列\(\{b _{n} \}\)满足\(a _{1} =1\),\(b _{2} =4\),且\(a _{2}\)既是\(a _{1} +b _{1}\)和\(b _{3} -a _{3}\)的等差中项,又是其等比中项.
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)记\(c _{n} = \begin{cases} { \dfrac {1}{a_{n}a_{n+2}},n=2k+1} \\ {a_{n}\cdot b_{n},n=2k}\end{cases}\),其中\(k∈N*\),求数列\(\{c _{n} \}\)的前\(2n\)项和\(S _{2n}\).
  • 题型:解答题 题类:模拟题 难易度:较难

    年份:2020

    数列\(\{a _{n} \}\),\(a _{1} =1\),\(a _{n+1} =2a _{n} -n ^{2} +3n(n∈N ^{*} ).\)
    \((\)Ⅰ\()\)是否存在常数\(λ\),\(μ\),使得数列\(\{a _{n} +λn ^{2} +μn\}\)是等比数列,若存在,求出\(λ\),\(μ\)的值,若不存在,说明理由.
    \((\)Ⅱ\()\)设\(b _{n} = \dfrac {1}{a_{n}+n-2^{n-1}},S_{n}=b_{1}+b_{2}+b_{3}+…+b_{n}\),证明:当\(n\geqslant 2\)时,\( \dfrac {n}{n+1} < S_{n} < \dfrac {5}{3}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} +1\}\)的前\(n\)项和\(S _{n}\)满足\(S _{n} =3a _{n}\),\(n∈N ^{*}\).
    \((1)\)求证数列\(\{a _{n} +1\}\)为等比数列,并求\(a _{n}\)关于\(n\)的表达式;
    \((2)\)若\(b_{n}=\log _{ \frac {3}{2}}(a_{n}+1)\),求数列\(\{(a _{n} +1)b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:较难

    年份:2020

    已知公差非零的等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n} (n∈N*)\),且\(a _{1}\),\(a _{2}\),\(a _{4}\)成等比数列,且\(S _{4} =10\),数列\(\{b _{n} \}\)满足\(b _{1} =2\),\(b_{n}-b_{n-1}=2^{n-1}(n\geqslant 2,n∈N^{*})\).
    \((1)\)求数列\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((2)\)设数列\(\{c _{n} \}\)满足\(c_{n}= \dfrac {\ln a_{n}}{b_{n}},(n∈N^{+})\),求证:\((1- \dfrac {1}{2^{n-1}} )\boldsymbol{⋅}\ln \sqrt {2} \leqslant c _{2} +…+c _{n} < \dfrac {3}{4}\),\((n∈N ^{*} , n\geqslant 2)\).
  • 题型:解答题 题类:模拟题 难易度:较难

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a _{1} =1\),\( \sqrt {a_{n}}- \sqrt {a_{n+1}}= \sqrt {a_{n}\cdot a_{n+1}}(n∈N^{*})\).
    \((\)Ⅰ\()\)求证:数列\(\{ \sqrt { \dfrac {1}{a_{n}}}\}\)为等差数列,并求\(a _{n}\);
    \((\)Ⅱ\()\)设\(b_{n}= \sqrt {1+2a_{n+1}}\),数列\(\{b _{n} \}\)的前\(n\)项和为\(S _{n}\),求证:\(S_{n} < n+1- \dfrac {1}{n+1}\).