职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:517 选择本页全部试题
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知正项数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(a_{1}=2\),\(2S_{n}=(a_{n}+2)(2a_{n}-3).\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若数列\(\{b_{n}\}\)满足\(b_{n}=\dfrac{1}{a_{n+1}\sqrt{a_{n}}}\),其前\(n\)项和为\(T_{n}\),证明:\(T_{n}< 2\sqrt{2}-\dfrac{4\sqrt{2}}{\sqrt{n+4}}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(a_{1}=1\),____,在以下三个条件中任选一个填入以上横线上,并求数列\(\{a_{n+1}-S_{n}\}\)的前\(n\)项和\(T_{n}.\)
    ①\(a_{n+1}=2S_{n}+2\);②\(a_{n+1}=2a_{n}+1\);③\(2S_{n}=a_{n+1}+1.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知函数\(f(x)=\log_{k}x(k\)为常数,\(k>0\)且\(k≠1).\)
    \((1)\)在下列条件中选择一个,使数列\(\{a_{n}\}\)是等比数列,并说明理由.
    ①数列\(\{f(a_{n})\}\)是首项为\(2\),公比为\(2\)的等比数列;
    ②数列\(\{f(a_{n})\}\)是首项为\(4\),公差为\(2\)的等差数列;
    ③数列\(\{f(a_{n})\}\)是首项为\(2\),公差为\(2\)的等差数列的前\(n\)项和构成的数列.
    \((2)\)在\((1)\)的条件下,当\(k=\sqrt{2}\)时,设\(b_{1}=a_{1}\),\(b_{n}=na_{n}-(n-1)a_{n-1}\),\((n\geqslant 2,n\in N^{*})\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)是正项等比数列,满足\(a_{3}\)是\(2a_{1}\),\(3a_{2}\)的等差中项,\(a_{4}=16.\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=(-1)^{n}\log_{2}a_{2n+1}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)是递增等比数列,且\(a_{3}=4\),\(a_{2}+a_{4}=10\),\(S_{n}\)为等差数列\(\{b_{n}\}\)的前\(n\)项和,且\(b_{1}=a_{1}\),\(S_{2}=a_{2}+1.\)
    \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
    \((2)\)若\(c_{n}=a_{n}b_{n}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足\(a_{1}=2\),\(a_{n+1}=3a_{n}-6.\)
    \((1)\)记\(b_{n}=a_{n}-3\),证明:\(\{b_{n}\}\)是等比数列,并求\(\{b_{n}\}\)的通项公式;
    \((2)\)求数列\(\{a_{n}\}\)的前\(n\)项和\(T_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    正项数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\(2\sqrt{S_{n}}=a_{n}+1.\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=\dfrac{2}{a_{n}\cdot a_{n+2}}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(B_{n}\),求证:\(B_{n}< \dfrac {2}{3}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足\(a_{1}=1,a_{n}+a_{n+1}=λ\cdot 2^{n}(n\in N*)(λ\)是常数\().\)
    \((Ⅰ)\)若\(λ=0\),证明\(\{a_{n}\}\)是等比数列;
    \((Ⅱ)\)若\(λ≠0\),且\(\{a_{n}\}\)是等比数列,求\(λ\)的值以及数列\(\{(-1)^{n}\log_{2}a_{3n-1}\}\)的前\(n\)项和\(S_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知数列\(\{a_{n}\}\)满足:\(a_{1}+3a_{2}+3^{2}a_{3}+⋯+3^{n-1}a_{n}=\dfrac{n}{3}(n\in N^{*}).\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)b_{n}=\dfrac{1}{3^{n+1}(1-a_{n})(1-a_{n+1})}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}.\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2021

    已知各项为正数的等比数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{3}=4.\)
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=\log_{2}a_{n}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}.\)