职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:151 选择本页全部试题
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)中,\(a _{1} > 0\),且\(a_{n+1}= \sqrt { \dfrac {3+a_{n}}{2}}\).
    \((\)Ⅰ\()\)若数列\(\{a _{n} \}\)为单调递增数列,试求\(a _{1}\)的取值范围;
    \((\)Ⅱ\()\)若\(a _{1} =4\),设\(b _{n} =|a _{n+1} -a _{n} |(n=1 , 2 , 3…)\),数列\(\{b _{n} \}\)的前\(n\)项的和为\(S _{n}\),求证:\(b_{1}+b_{2}+…+b_{n} < \dfrac {5}{2}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)和\(\{b _{n} \}\)满足:\(b _{3} -b _{2} =3a _{1} =6\),\(a_{1}a_{2}a_{3}…a_{n}=( \sqrt {2})^{b_{n}}(n∈N^{*})\)且数列\(\{ \dfrac {b_{n}}{n}\}\)为等差数列.设\(c _{n} = \dfrac {(-1)^{n}}{a_{n}}+ \dfrac {1}{b_{n}}\),数列\(\{c _{n} \}\)的前\(n\)项和为\(S _{n}\).
    \((\)Ⅰ\()\)求\(\{a _{n} \}\)与\(\{b _{n} \}\)的通项公式:
    \((\)Ⅱ\()\)若对于任意\(n∈N*\)均有\(S _{k} \leqslant S _{n}\),求正整数\(k\)的值.
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),已知\(a _{1} =2\),\(6S _{n} =3na _{n+1} -2n(n+1)(n+2)\),\(n∈N*\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)证明:\( \dfrac {1}{a_{1}}+ \dfrac {1}{a_{2}}+…+ \dfrac {1}{a_{n}} < \dfrac {5}{6}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    等差数列\(\{a _{n} \}\)和等比数列\(\{b _{n} \}\)满足\(a _{1} =1\),\(a _{1} b _{1} +a _{2} b _{2} +…+a _{n} b _{n} =(n-1)\boldsymbol{⋅}2 ^{n+1} +2\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\),\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)若数列\(\{c _{n} \}\)满足:\(b _{n} c _{n} =a _{n} +c _{n}\),求证:\(c _{1} +c _{2} +…+c _{n} < 3\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\(a _{1} =1\),\(\{a _{n} \}\)的前\(n\)项和\(S _{n}\)满足\(S _{n+1} =2S _{n} +n+1\).
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)记数列\(\{ \dfrac {1}{a_{n}}\}\)的前\(n\)项和为\(T _{n}\),证明:\(T_{n} < \dfrac {5}{3}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知正项等差数列\(\{a _{n} \}\)与等比数列\(\{b _{n} \}\)满足\(a _{1} =1\),\(b _{2} =4\),且\(a _{2}\)既是\(a _{1} +b _{1}\)和\(b _{3} -a _{3}\)的等差中项,又是其等比中项.
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)记\(c _{n} = \begin{cases} { \dfrac {1}{a_{n}a_{n+2}},n=2k+1} \\ {a_{n}\cdot b_{n},n=2k}\end{cases}\),其中\(k∈N*\),求数列\(\{c _{n} \}\)的前\(2n\)项和\(S _{2n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} +1\}\)的前\(n\)项和\(S _{n}\)满足\(S _{n} =3a _{n}\),\(n∈N ^{*}\).
    \((1)\)求证数列\(\{a _{n} +1\}\)为等比数列,并求\(a _{n}\)关于\(n\)的表达式;
    \((2)\)若\(b_{n}=\log _{ \frac {3}{2}}(a_{n}+1)\),求数列\(\{(a _{n} +1)b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    数列\(\{a _{n} \}\)是等差数列,\(S _{n}\)为其前\(n\)项和,且\(a _{5} =3a _{2}\),\(S _{7} =14a _{2} +7\),数列\(\{b _{n} \}\)前\(n\)项和为\(T _{n}\),且满足\(3b _{n} =2T _{n} +3\),\(n∈N*\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)和\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{ \dfrac {a_{n}}{b_{n}}\}\)的前\(n\)项和为\(R _{n}\),求\(R _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知公差不为\(0\)的等差数列\(\{a _{n} \}\)满足:\(a _{1} =1\),\(a _{2}\),\(a _{4}\),\(a _{8}\)成等比数列,数列\(\{b _{n} \}\)满足:\(b _{1} =1\),\(b _{n+1} = \dfrac {(b_{n}+n)b_{n}}{n}\),
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)记数列\(c _{n} = \dfrac {1}{b_{n}+a_{n}}\),数列\(\{c _{n} \}\)的前\(n\)项和为\(T _{n}\),证明:\( \dfrac {1}{2}\leqslant T_{n} < 1\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)中,\(a _{1} =6\),\(a_{n+1}= \dfrac {1}{3} a_{ n }^{ 2 }-a_{n}+3 (n∈N ^{*} ).\)
    \((1)\)分别比较下列每组中两数的大小:①\(a _{2}\)和\(6× \dfrac {3}{2}\);②\(a _{3}\)和\(6×( \dfrac {3}{2})^{3}\);
    \((2)\)当\(n\geqslant 3\)时,证明:\( \sum\limits_{i=2}^{n}( \dfrac {a_{i}}{6})^{ \frac {2}{i}} > 2( \dfrac {3}{2})^{n}-3\).