职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

总题量:151 选择本页全部试题
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)前\(n\)项和为\(S _{n}\),且满足\(a_{1}=1,a_{n}=-S_{n}S_{n-1}(n\geqslant 2,n∈N^{*})\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)记\(T _{n}\)为\(\{a _{n+1} S _{n} \}\)的前\(n\)项和,\(n∈N ^{*}\),证明:\(T_{n}\geqslant - \dfrac {3}{4}+ \dfrac {1}{2n(n+1)}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(a _{1} =2\),\(S _{5} =30\),数列\(\{b _{n} \}\)的前\(n\)项和为\(T _{n}\),且\(T_{n}=2^{n}-1\).
    \((1)\)求数列\(\{a _{n} \}\),\(\{b _{n} \}\)的通项公式;
    \((2)\)设\(c_{n}= \dfrac {b_{n}}{(b_{n}+1)(b_{n+1}+1)}\),数列\(\{c _{n} \}\)的前\(n\)项和为\(M _{n}\),求\(M _{n}\);
    \((3)\)设\(d_{n}=(-1)^{n}(a_{n}b_{n}+\ln S_{n})\),求数列\(\{d _{n} \}\)的前\(n\)项和.
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)满足\( \dfrac {1}{2a_{1}+3}+ \dfrac {2}{2a_{2}+3}+ \dfrac {3}{2a_{3}+3}+…+ \dfrac {n}{2a_{n}+3}= \dfrac {n}{2}(n∈N^{*})\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)设\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),求数列\(\{b _{n} \}\)的前\(2020\)项和\(T _{2020}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知等差数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),等比数列\(\{b _{n} \}\)的前\(n\)项和为\(T _{n}\),且\(a _{1} =b _{1} =1\),\(a _{5} =S _{3}\),\(a _{4} +b _{4} =15\).
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)与\(\{b _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)求数列\(\{ \dfrac {S_{n}\cdot T_{n}}{n}\}\)的前\(n\)项和.
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知\(S _{n}\)为数列\(\{a _{n} \}\)的前\(n\)项和,从下面两个条件中选择其中一个作为条件求下列问题:
    条件\(1\):数列\(\{a _{n} \}\)为正项等比数列,\(a _{3} =18\),\(S_{3}=26(n∈N^{*})\),\(b_{n}= \dfrac {a_{n+1}}{S_{n}S_{n+1}}\);
    条件\(2\):数列\(\{a _{n} \}\)为等差数列,\(a _{2} =9\),\(a _{6} =17\),\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),
    求数列\(\{a _{n} \}\)的通项公式、前\(n\)项和\(S _{n}\)、数列\(\{b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)中,\(a _{1} =1\),\(a_{n+1}= \dfrac {(n+1)a_{n}}{n+2a_{n}}(n∈N^{*})\).
    \((1)\)求证:\(\{ \dfrac {n}{a_{n}}\}\)是等差数列;
    \((2)\)若\(c _{n} =a _{n} a _{n+1}\),且数列\(b_{n}= \dfrac {4}{3^{n}\cdot n}\),数列\(\{b _{n} c _{n} \}\)的前\(n\)项和为\(T _{n}\),求\(T _{n}\)的取值范围.
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)是等差数列,且满足\(a _{6} =6+a _{3}\),\(a _{6} -1\)是\(a _{5} -1\)与\(a _{8} -1\)的等比中项.
    \((1)\)求数列\(\{a _{n} \}\)的通项公式;
    \((2)\)已知数列\(\{b _{n} \}\)满足\(b _{n} =2 ^{n} \boldsymbol{⋅}a _{n}\),求数列\(\{b _{n} \}\)的前\(n\)项和\(S _{n}\),并求\(S _{n}\)的最小值.
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的通项公式为\(a _{n} = \dfrac {[1+(-1)^{n}](6-n)}{2}+ \dfrac {[1+(-1)^{n+1}]}{2} × \dfrac {1}{2^{n}}\).
    \((1)\)求写出数列\(\{a _{n} \}\)的前\(6\)项;
    \((2)\)求数列\(\{a _{n} \}\)前\(2n\)项中所有奇数项和\(S _{奇}\)与所有偶数项和\(S _{偶}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),满足\(a _{n+1} =S _{n} -1(n∈N _{+} )\),\(a _{1} =2\),
    \((1)\)求证:数列\(\{S _{n} -1\}\)为等比数列;
    \((2)\)记\(b _{n} =nS _{n}\),求数列\(\{b _{n} \}\)的前\(n\)项和\(T _{n}\).
  • 题型:解答题 题类:模拟题 难易度:中档

    年份:2020

    已知数列\(\{a _{n} \}\)的前\(n\)项和为\(S _{n}\),且\(S _{n} =2a _{n} -a _{1} (n∈N ^{*} )\),数列\(\{b _{n} \}\)满足\(b _{1} =6\),\(b_{n}=S_{n}+ \dfrac {1}{a_{n}}+4 (n∈N ^{*} ).\)
    \((\)Ⅰ\()\)求数列\(\{a _{n} \}\)的通项公式;
    \((\)Ⅱ\()\)记数列\(\{ \dfrac {1}{b_{n}}\}\)的前\(n\)项和为\(T _{n}\),证明:\(T_{n} < \dfrac {1}{2}\).