题型:解答题 题类:期中考试 难易度:较难
年份:2018
在等差数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{1}}+{{a}_{6}}=-17\),\({{a}_{2}}+{{a}_{7}}=-23\).
\((\)Ⅰ\()\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;
\((\)Ⅱ\()\)设数列\(\left\{ 2{{a}_{n}}+{{b}_{n}} \right\}\)是首项为\(1\),公比为\(q\)的等比数列,求数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{S}_{n}}\).
题型:解答题 题类:期中考试 难易度:较难
年份:2018
\((2)\)设\(\{{{a}_{n}}\}\)的前\(n\)项和为\({{S}_{n}}\),用数学归纳法证明:\({{S}_{n}} < \dfrac{1}{2}{{(n+1)}^{2}}\).
题型:解答题 题类:期中考试 难易度:较难
年份:2018
在数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{1}}=8\),\({{a}_{4}}=2\),且满足\({{a}_{n+2}}+{{a}_{n}}=2{{a}_{n+1}}\).
\((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式; \((2)\)设\({{S}_{n}}\)是数列\(\left\{ \left| {{a}_{n}} \right| \right\}\)的前\(n\)项和,求\({{S}_{n}}\).
题型:解答题 题类:期中考试 难易度:较难
年份:2018
已知等差数列\(\left\{ {{a}_{n}} \right\}\)满足:\({{a}_{3}}=7,{{a}_{5}}+{{a}_{7}}=26\),\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\).
\((1)\)求\({{a}_{n}}\)及\({{S}_{n}}\);
\((2)\)令\({{b}_{n}}=\dfrac{1}{a_{n}^{2}-1}\left( n\in {{N}^{{*}}} \right)\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).