职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知等差数列\(\{a_{n}\}\)的首项\(a_{1}=1\),公差\(d\neq 0\),等比数列\(\{b_{n}\}\)满足\(a_{1}=b_{1}\),\(a_{2}=b_{2}\),\(a_{5}=b_{3}\).
    \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{c_{n}\}\)对任意\(n∈N^{*}\)均有\( \dfrac {c_{1}}{b_{1}}+ \dfrac {c_{2}}{b_{2}}+…+ \dfrac {c_{n}}{b_{n}}=a_{n+1}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(S_{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知等比数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}.\)若\(3S_{3}=2S_{2}+S_{4}\),且\(a_{5}=32\).
    \((1)\)求数列\(\{a_{n}\}\)的通项公式\(a_{n}\);
    \((2)\)设\(b_{n}= \dfrac {1}{\log _{2}a_{n}\cdot \log _{2}a_{n+2}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}= \dfrac {2}{3}a_{n}+1(n∈N^{*})\);
    \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)若数列\(\{n|a_{n}|\}\)的前\(n\)项和为\(T_{n}\),求数列\(\{T_{n}\}\)的通项公式、
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    设\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和,且\(S_{n}=n^{2}+n+1\),\(n∈N^{*}\).
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)求数列\(\{ \dfrac {1}{a_{n}a_{n+1}}\}\)的前\(n\)项和\(T_{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    设数列\(\{a_{n}\}\)满足\(a_{1}=2\),\(a_{n+1}-a_{n}=2^{n}\).
    \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)设\(b_{n}=\log _{2}a_{1}+\log _{2}a_{2}+…+\log _{2}a_{n}\),求数列\(\{ \dfrac {1}{b_{n}}\}\)的前\(n\)项和\(S_{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),满足\(S_{n}=2a_{n}+2n-5\),\((n∈N_{+}).\)
    \((\)Ⅰ\()\)求证:数列\(\{a_{n}-2\}\)为等比数列;
    \((\)Ⅱ\()\)记\(b_{n}= \dfrac {a_{n}-2}{a_{n+1}a_{n}}\),数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\),求证:\(T_{n} < \dfrac {1}{3}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)是公比为\(2\)的等比数列,且\(a_{2}\),\(a_{3}+1\),\(a_{4}\)成等差数列.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)记\(b_{n}= \dfrac {1}{\log _{2}a_{n+1}\cdot \log _{2}a_{n+2}}\),\(T_{n}\)是数列\(\{b_{n}\}\)的前\(n\)项和,若\(T_{n} > 0.99\),求\(n\)的最小值.
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    设{an}(n∈N*)是各项均为正数的等比数列,且a2=3,a4-a3=18.
    (Ⅰ)求{an}的通项公式;
    (Ⅱ)若bn=an+log3an,求b1+b2+…+bn
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知\(S_{n}\)是等差数列\(\{a_{n}\}\)的前\(n\)项和,已知\(S_{10}=55\),且\(a_{2}\),\(a_{4}\),\(a_{8}\)成等比数列
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}= \dfrac {S_{n}}{n}\),求\(b_{3}+b_{7}+b_{11}+…+b_{4n-1}\)的值.
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)为公差不为零的等差数列,\(a_{2}=3\)且\(a_{1}\),\(a_{3}\),\(a_{7}\)成等比数列.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若数列\(\{b_{n}\}\)满足\(b_{n}= \dfrac {10}{10a_{n}a_{n+1}}\),记数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),求证:\(S_{n} < \dfrac {1}{2}\).