职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:解答题 题类:历年真题 难易度:较易

    年份:2018

    已知等差数列\(\{a_{n}\}\)的前\(n\)项和味\(S_{n}\),\(a_{1} > 0\),\(a_{1}⋅a_{2}= \dfrac {3}{2}\),\(S_{5}=10\).
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)记数列\(b_{n}= \begin{cases} \overset{2^{a_{n}},n{为奇数}}{a_{n},n{为偶数}}\end{cases}\),求数\(\{b_{n}\}\)的前\(2n+1\)项和\(T_{2n+1}\).
  • 题型:解答题 题类:历年真题 难易度:中档

    年份:2018

    已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\(S_{n}\),且\(1\),\(a_{n}\),\(S_{n}\)成等差数列.

    \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;

    \((2)\)若数列\(\left\{ {{b}_{n}} \right\}\)满足\({{a}_{n}}\cdot {{b}_{n}}=1+2n{{a}_{n}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).

  • 题型:解答题 题类:历年真题 难易度:中档

    年份:2018

    已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\(S_{n}\),且\(1\),\(a_{n}\),\(S_{n}\)成等差数列.

        \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;

        \((2)\)若数列\(\left\{ {{b}_{n}} \right\}\)满足\({{a}_{n}}\cdot {{b}_{n}}=1+2n{{a}_{n}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).

  • 题型:解答题 题类:历年真题 难易度:中档

    年份:2018

    设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=1\),\(S_{n}=na_{n}-3n(n-1)(n∈N^{*}).\)

    \((1)\)求数列\(\{a_{n}\}\)的通项公式.

    \((2)\)是否存在正整数\(n\),使得\(\dfrac{{{S}_{1}}}{1}\)\(+\)\(\dfrac{{{S}_{2}}}{2}\)\(+\)\(\dfrac{{{S}_{3}}}{3}\)\(+…+\)\(\dfrac{{{S}_{n}}}{n}\)\(-\)\(\dfrac{3}{2}\)\((n-1)\)\({\,\!}^{2}\)\(=2018\)?若存在,求出\(n\)的值;若不存在,请说明理由.

  • 题型:解答题 题类:历年真题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)是等差数列,且\(a_{1}\),\(a_{2}(a_{1} < a_{2})\)分别为方程\(x^{2}-6x+5=0\)的两个实数根.

    \((1)\)求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\);

    \((2)\)设\({{b}_{n}}=\dfrac{{{S}_{n}}}{n+c}\),求证:当\(c=-\dfrac{1}{2}\)时,数列\(\{b_{n}\}\)是等差数列.

  • 题型:解答题 题类:历年真题 难易度:难

    年份:2018

    已知数列\(\{{{a}_{n}}\}\)的各项为正数,其前\(n\)项和为\({{S}_{n}}\)满足\({{S}_{n}}={{(\dfrac{{{a}_{n}}+1}{2})}^{2}}\),设\({{b}_{n}}=10-{{a}_{n}}(n\in N)\)


    \((1)\)求证:数列\(\{{{a}_{n}}\}\)是等差数列,并求\(\{{{a}_{n}}\}\)的通项公式;

    \((2)\)设数列\(\{{{b}_{n}}\}\)的前\(n\)项和为\({{T}_{n}}\),求\({{T}_{n}}\)的最大值.

  • 题型:解答题 题类:历年真题 难易度:较易

    年份:2018

    已知公差不为零的等差数列\(\{a_{n}\}\)满足\(a_{1}=5\),且\(a_{3}\),\(a_{6}\),\(a_{11}\)成等比数列.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设\(b_{n}=a_{n}\cdot 3^{n-1}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}\).
  • 题型:解答题 题类:历年真题 难易度:较难

    年份:2018


    已知各项均为正数的等差数列\(\{a_{n}\}\)满足\(a_{4}=2a_{2}\),且\(a_{1}\),\(4\),\(a_{4}\)成等比数列,设\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\).

    \((1)\)求数列\(\{a_{n}\}\)的通项公式\(;\)

    \((2)\)设数列\(\left\{ \dfrac{S_{n}}{n\mathrm{{·}}2^{n}} \right\}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < 3\)

  • 题型:解答题 题类:历年真题 难易度:中档

    年份:2018

    在等差数列\(\{a_{n}\}\)中\(a_{5}=0\),\(a_{10}=10\).
    \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)若数列\(\{b_{n}\}\)满足\(b_{n}=( \dfrac {1}{2})\;^{a_{n}+10}\),求数列\(\{nb_{n}\}\)的前\(n\)项和\(S_{n}\).
  • 题型:解答题 题类:历年真题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)是各项均不为\(0\)的等差数列,公差为\(d\),\(S_{n}\)为其前\(n\)项和,且满足\(a_{n}^{2}=S_{2n-1}\),\(n∈N^{*}.\)数列\(\{b_{n}\}\)满足\(b_{n}= \dfrac {1}{a_{n}a_{n+1}}\),\(T_{n}\)为数列\(\{b_{n}\}\)的前\(n\)项和.
    \((1)\)求数列\(\{a_{n}\}\)的通项公式和\(T_{n}\);
    \((2)\)是否存在正整数\(m\),\(n(1 < m < n)\),使得\(T_{1}\),\(T_{m}\),\(T_{n}\)成等比数列?若存在,求出所有\(m\),\(n\)的值;若不存在,请说明理由.