职教组卷基于海量职教高考试题库建立的在线组卷及学习系统
职教组卷
科目:

选择章节

  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知等差数列\(\{a_{n}\}\)的首项\(a_{1}=1\),公差\(d\neq 0\),等比数列\(\{b_{n}\}\)满足\(a_{1}=b_{1}\),\(a_{2}=b_{2}\),\(a_{5}=b_{3}\).
    \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)设数列\(\{c_{n}\}\)对任意\(n∈N^{*}\)均有\( \dfrac {c_{1}}{b_{1}}+ \dfrac {c_{2}}{b_{2}}+…+ \dfrac {c_{n}}{b_{n}}=a_{n+1}\),求数列\(\{c_{n}\}\)的前\(n\)项和\(S_{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)满足:\(a_{1}+ \dfrac {a_{2}}{\lambda }+ \dfrac {a_{3}}{\lambda ^{2}}+…+ \dfrac {a_{n}}{\lambda ^{n-1}}=n^{2}+2n(\)其中常数\(λ > 0\),\(n∈N^{*}).\)
    \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
    \((\)Ⅱ\()\)求证:当\(λ=4\)时,数列\(\{a_{n}\}\)中的任何三项都不可能成等比数列;
    \((\)Ⅲ\()\)设\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和\(.\)求证:若任意\(n∈N^{*}\),\((1-λ)S_{n}+λa_{n}\geqslant 3\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    如图所示,在四棱锥\(P-ABCD\)中,底面\(ABCD\)是正方形,侧面\(PAD⊥\)底面\(ABCD\),且\(PA=PD= \dfrac { \sqrt {2}}{2}AD= \sqrt {2}\).
    \((1)\)求证:平面\(PAB⊥\)平面\(PCD\);
    \((2)\)求三棱锥\(D-PBC\)体积.
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    在等差数列\(\{a_{n}\}\)中,\(a_{1}=3\),其前\(n\)项和为\(S_{n}\),等比数列\(\{b_{n}\}\)的各项均为正数,\(b_{1}=1\),公比为\(q\),且\(b_{2}+S_{2}=12,q= \dfrac {S_{2}}{b_{2}}\).
    \((I)\)求\(a_{n}\)与\(b_{n}\);
    \((II)\)设\(T_{n}=a_{n}b_{1}+a_{n-1}b_{2}+…+a_{1}b_{n},n∈N^{+}\),求\(T_{n}\)的值.
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    如图,直角\(\triangle ABC\)中,\(∠ACB=90^{\circ}\),\(BC=2AC=4\),\(D\)、\(E\)分别是\(AB\)、\(BC\)边的中点,沿\(DE\)将\(\triangle BDE\)折起至\(\triangle FDE\),且\(∠CEF=60^{\circ}\).
    \((\)Ⅰ\()\)求四棱锥\(F-ADEC\)的体积;
    \((\)Ⅱ\()\)求证:平面\(ADF⊥\)平面\(ACF\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),满足\(S_{n}=2a_{n}+2n-5\),\((n∈N_{+}).\)
    \((\)Ⅰ\()\)求证:数列\(\{a_{n}-2\}\)为等比数列;
    \((\)Ⅱ\()\)记\(b_{n}= \dfrac {a_{n}-2}{a_{n+1}a_{n}}\),数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\),求证:\(T_{n} < \dfrac {1}{3}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    数列\(\{a_{n}\}\)为正项数列,\(a_{1}=4\),且对\(∀n∈N^{*}\),都有\( a_{ n+1 }^{ 2 }-2 a_{ n }^{ 2 }=a_{n}a_{n+1}\);
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若数列\(\{b_{n}\}\)满足\(b_{n}= \dfrac {1}{\log _{2}a_{n}\cdot \log _{2}a_{n-1}}\),\(T_{n}\)为数列\(\{b_{n}\}\)的前项和,求证:\(T_{n} < 1\)
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知数列\(\{a_{n}\}\)的前项和\(S_{n}= \dfrac {3^{n+1}-3}{2}\).
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)设数列\(\{b_{n}\}\)满足\({b}_{n}=2{\log }_{3}{a}_{n} \),求数列\(\{(-1)a_{n}+b_{n}\}\)的前\(n\)项和\(T_{n}\).
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知正三棱柱\(ABC-A_{1}B_{1}C_{1}\)的底面边长为\(3\),\(E\),\(F\)分别为\(CC_{1}\),\(BB_{1}\)上的点,且\(EC=3FB=3\),点\(M\)是线段\(AC\)上的动点.
    \((1)\)试确定点\(M\)的位置,使\(BM/\!/\)平面\(AEF\),并说明理由;
    \((2)\)若\(M\)为满足\((1)\)中条件的点,求三棱锥\(M\)一\(AEF\)的体积.
  • 题型:解答题 题类:模拟题 难易度:较易

    年份:2018

    已知等差数列\(\{a_{n}\}\)的公差为\(d\),且方程\(a_{1}x^{2}-dx-3=0\)的两个根分别为\(-1\),\(3\).
    \((1)\)求数列\(\{a_{n}\}\)的通项公式;
    \((2)\)若\(b_{n}=2^{a_{n}}+2a_{n}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}\).